
207

Journal of ICT, 19, No. 2 (April) 2020, pp: 207-223

How to cite this article:

Yusoff, N., Kabir Ahmad, F., & Jemili, M. F. (2020). Motion learning using spatio-temporal 
neural network. Journal of Information and Communication Technology, 19(2), 207-223.

MOTION LEARNING USING SPATIO-TEMPORAL 
NEURAL NETWORK

1Nooraini Yusoff, 2Farzana Kabir-Ahmad & 3Mohamad-Farif Jemili 
 1 Faculty of Bioengineering and Technology,

Universiti Malaysia Kelantan, Malaysia
 2 School of Computing, Universiti Utara Malaysia, Malaysia
3Department of Information Technology and Communication,
 Sultan Abdul Halim Mu’adzam Shah Polytechnic, Malaysia

nooraini.y@umk.edu.my; farzana58@uum.edu.my;mfarif@polimas.edu.my

ABSTRACT

Motion trajectory prediction is one of the key areas in behaviour 
and surveillance studies. Many related successful applications 
have been reported in the literature. However, most of the studies 
are based on sigmoidal neural networks in which some dynamic 
properties of the data are overlooked due to the absence of spatio-
temporal encoding functionalities. Even though some sequential 
(motion) learning studies have been proposed using spatio-
temporal neural networks, as in those sigmoidal neural networks, 
the approach used is mainly supervised learning. In such learning, 
it requires a target signal, in which this is not always available in 
some applications. For this study, motion learning using spatio-
temporal neural network is proposed. The learning is based on 
reward-modulated spike-timing-dependent plasticity (STDP), 
whereby the learning weight adjustment provided by the standard 
STDP is modulated by the reinforcement. The implementation 
of reinforcement approach for motion trajectory can be regarded 
as a major contribution of this study. In this study, learning is 
implemented on a reward basis without the need for learning 
targets. The algorithm has shown good potential in learning motion 
trajectory particularly in noisy and dynamic settings. Furthermore, 
the learning uses generic neural network architecture, which 
makes learning adaptable for many applications.
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INTRODUCTION

Tracking objects or people is fundamental and essential in predicting the 
patterns of trajectory motion for behaviour modelling and surveillance. A 
number of studies have been reported on tracking human motion detection 
(Kratz & Nishino, 2012), prediction of lane trajectories (Tomar, Verma, & 
Tomar, 2010), ship trajectory (Xu, Liu, & Yang, 2011), movement of mobile 
users in cellular communication systems (Bhattacharya & Bhattacharya, 
2011; Monreale, Pinelli, Trasarti, & Giannoti, 2009), and tourist movements 
(Xia, Zeephongsekul, & Packer, 2010). In most of the motion prediction 
applications, sigmoidal neural network (NN) with backpropagation (BP) was 
used to learn behavioural motion patterns.

A BP neural network (Rumelhart, Hinton, & Williams, 1986) consists of 
a set of connected neurons linked in a feedforward manner. There are basically 
three minimal layers namely input, hidden, and output layers. Depending on 
the problem complexity, a network can have more than one hidden layer. 
Learning is implemented via presenting a network with a set of input values 
and a target class (i.e. supervised learning), then the algorithm updates the 
weight strength between neurons based on the deviation between the presently 
produced output and desired output. The activity of a neuron is dependent on 
the activation function that computes the total weighted input signal based on 
a threshold value. A neuron will be activated if its activity passes the threshold; 
otherwise it will be deactivated.

The backpropagation neural network (BPNN) model is known as 
a sigmoidal neural net. Even though the sigmoidal NN models have been 
successfully used to solve problems in a number of tasks including motion 
classifications, the plausibility of these models with respect to biological 
neuron properties is minimal with several drawbacks. Furthermore, the 
complexity of a learning computation grows when learning with complex data 
(e.g. with spatio-temporal features) due to lack of functionalities for temporal 
coding. Hence, to overcome the problem in learning time-embedded data and 
with growing evidence on the importance of timing in neural activity from the 
neuroscience field, the field of NN has evolved to a third generation of NN.

Spatio-temporal neural networks or Spiking Neural Networks (SNNs) 
are the third generation of NN models. In comparison to sigmoidal neural 
network models, SNNs imitate more closely the biological neuron properties, 
have faster computation and are efficient for spatial temporal processing 
(Thorpe, Delorme, & Van Rullen, 2001; Van Rullen, Guyonneau, & Thorpe, 
2005). In neuron communication, within a certain time interval, signals in 
the form of a spike pulse are propagated in the neuronal workspace. Thus, 
by exploiting the spiking behaviour as the core element of the model, SNN 
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models simulate more closely the biological neural system. On the other 
hand, the computational complexity in the previous models that required a 
mass number of hidden units could be simplified with a single spiking neuron 
function. Hence, a small number of McCulloch-Pitts neural networks can also 
be computed by a small SNN (Maass, 1997). The dynamics of a neuronal 
circuit consisting of spiking neurons with spatio-temporal distribution of 
spikes have been of interest in most of the recent Artificial Neural Networks 
(ANN) models. Due to its powerful and realistic computational properties, 
SNN offers a range of applications including olfactory system (Ambard, Guo, 
Martinez, & Bermak, 2008), visual recognition (Hassanien, Abraham, & 
Grosan, 2009), speech processing (Glackin, McGinnity, Maguire & McDaid, 
2010), robotics (Yanduo & Kun, 2009), and simulation of biological neural 
circuits (Brunel & Lavigne, 2009).

MOTION LEARNING IN SPATIO-TEMPORAL 
NEURAL NETWORK

Many studies of motion learning from the literature, have reported the use of 
neural network with backpropagation learning algorithm. Even though many 
studies have proven the success of NN with BP to predict motion, the spatial 
and temporal information from the data are treated independently. This could 
overlook some dynamic properties of the data due to the absence of spatio-
temporal encoding functionalities in the sigmoidal neural net.

Realising the need for learning complex data on motion learning, many 
recent studies have shifted to spatio-temporal neural network. Some of the 
recent works on motion learning using spatio-temporal neural network include 
work by Zhang and Patras (2017). They proposed a deep spatio-temporal neural 
network (D-STN) to forecast long-term mobile traffic. From the experiments 
conducted with publicly available 60-day long traffic measurements collected 
in the city of Milan and the Trentino region, it demonstrated that the proposed 
D-STN provided up to 61% lower prediction errors as compared to the 
widely employed Autoregressive Integrated Moving Average (ARIMA) 
methods. Similarly, Paulun, Wendt, and Kasabov (2018) proposed using 
NeuCube for accurate recognition of moving objects. NeuCube convoluted a 
series of spikes and formed them into a brain-like spiking neural network. It 
integrated deep unsupervised learning, classification tasks and dynamic visual 
recognition. The method was successfully tested on the benchmark data with 
92.90% classification accuracy. Furthermore, Yang, Wu, Huang, and Luo 
(2018) proposed a spiking neural network to classify human motion type via 
skeleton movements. Initially, the real time motion data were encoded into a 
series of spikes and the type of motion was represented by a spike time. Then 
for training, they used a two-layered spiking neural network using a gradient 
descent learning algorithm. The experimental results demonstrated that the 
proposed method achieved good learning precision and generalization.
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In another application, Guo, Lin, Wöhrl, and Liao (2018) studied animal 
motion behaviour using spatio-temporal neural network based method. They 
used a spiking neural network to learn the trajectory of body centre for real 
ants locomotion compared with virtual ants. The findings showed that the 
simulated gait pattern, including joint trajectories, matched the experimental 
data collected from real ants walking in free mode. The model could also be 
beneficial in studying higher level behaviour of insects. In the implementation, 
a single neuron was used to simulate the neuron group activating the same 
muscle(s). This at some point overlooked some dynamic properties of 
spiking neurons and therefore the model was less practical for more complex 
problems.

In the studies mentioned, a supervised learning algorithm was mainly 
used to train a particular network to learn motion patterns. In these learning 
schemes, the aim of learning was to reduce the deviation value between the 
network output and desired output (learning target). However, the learning 
target was not always available for some applications and target encoding 
could become complex.

In this study, we propose a motion learning algorithm in spatio-
temporal neural network. The contribution of this study can be attributed to 
the implementation of motion learning using a reinforcement approach. Unlike 
the supervised approaches, learning is established through a trial and error 
basis without the need for learning targets. In our approach, the algorithm is 
based on a modulated spike-time dependent plasticity (STDP), in which the 
standard STDP is modified by a reinforcement signal, known as the learning 
reward or penalty resulting from the network response.

METHODOLOGY

The core aim of this study is to propose a learning algorithm that can learn to 
bind a set of motion patterns in spatio-temporal manner to its desired network 
responses. As a case study, a neural network is trained to respond to a set 
of fish motion patterns. The fish motion data were chosen, as this research 
was a part of a fundamental research by the Ministry of Higher Education 
(MOHE) with the main aim of studying fish behaviour that could contribute to 
the field of remote sensing in developing technology beneficial to the fishery 
industry. Fish movement behaviour could also provide some indication on 
water quality. The methodology consisted of three main phases which are 
described as follows:

Phase 1: Design a Goal-Directed Spatio-Temporal Motion Pattern 
Learning Scheme

In this initial phase, a spatio-temporal motion pattern learning scheme was 
outlined at the macro level. The key outcome from this phase was a learning 
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design that described the learning simulation protocols. For a more plausible 
and realistic learning strategy, the proposed learning scheme was inspired by a 
popular behavioural learning experiment by Erickson and Desimone (1999).

Phase 2: Encode Stimulus Input, Target Response and Motion Sequence

The purpose of this phase was to encode the neural input and output (response) 
and define a neural network simulation model and spiking properties. The fish 
dataset was obtained from fish4knowledge (Beyan & Fisher, 2012) in this 
study. Fish motion trajectory (T) is defined by the coordinates (x and y) in the 
fish bounding boxes in Figure 1. The n frame of the trajectories of any fish is 
defined by Equation 1. 

Ti= {(x1, y1), (x2, y2),…(xn, yn)}.                                            (1)

where T is the motion trajectory at time i, x and y are the coordinates in the 
fish bounding boxes and n is the number of frame.

An example of fish motion data for Fish 1 and Fish 2 are shown in 
Figure 1.

     
Figure 1. Motion trajectories for Fish 1 and Fish 2.

Phase 3: Develop Goal-Directed Motion Pattern Learning Algorithm via 
Modulated Spike-Time Dependent Plasticity (STDP)

The purpose of a learning algorithm is to update the strength of connections 
between neurons (i.e. information nodes) until convergence. The convergence 
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Figure 1. Motion trajectories for Fish 1 and Fish 2.

Phase 3: Develop Goal-Directed Motion Pattern Learning Algorithm via Modulated Spike-Time
Dependent Plasticity (STDP)

The purpose of a learning algorithm is to update the strength of connections between neurons (i.e.
information nodes) until convergence. The convergence state defines a stable association between input and
target output neurons with strong connections. This learning algorithm was an extended version of Izhikevich
(2007) for paired-associate learning task. The learning was primarily introduced to strengthen the association
of stimulus-response. In our study, we investigated the performance of a modulated STDP for motion
trajectory learning with a sequence of points. Moreover, we proposed a new reward policy (as in Table 1) for
motion learning in a reinforcement learning paradigm.

From the standard STDP rule, weight changes are based on the variance ( t) between the
postsynaptic neuron (tpost) and the presynaptic neuron (tpre) firing time. The firing time is captured from the
last spike timing of presynaptic neurons of each fired neuron. The weight is fortified if the postsynaptic
neuron fires after its presynaptic and weakened otherwise. The weight change is formulated as in Equation 2:

wstdp = {A+e- t/ +, e t/ -, t 0} (2)

where t = tpost - tpre, parameters + ( ) is the time constant (in ms), and A+ (A ) denotes the highest change,
wstdp, when t is approaching 0.



212

Journal of ICT, 19, No. 2 (April) 2020, pp: 207-223

state defines a stable association between input and target output neurons 
with strong connections. This learning algorithm was an extended version 
of Izhikevich (2007) for paired-associate learning task. The learning was 
primarily introduced to strengthen the association of stimulus-response. In 
our study, we investigated the performance of a modulated STDP for motion 
trajectory learning with a sequence of points. Moreover, we proposed a new 
reward policy (as in Table 1) for motion learning in a reinforcement learning 
paradigm.

From the standard STDP rule, weight changes are based on the variance 
(Dt) between the postsynaptic neuron (tpost) and the presynaptic neuron (tpre) 
firing time. The firing time is captured from the last spike timing of presynaptic 
neurons of each fired neuron. The weight is fortified if the postsynaptic neuron 
fires after its presynaptic and weakened otherwise. The weight change is 
formulated as in Equation 2:

Dwstdp = {A+e
-Dt/t+, Dt ≥ 0; A-e

Dt/t-, Dt < 0}                                                      (2)

where Dt = tpost - tpre, parameters t+ (t-) is the time constant (in ms), and A+ (A-) 
denotes the highest change, Dwstdp, when Dt is approaching 0.

The standard STDP alone only yields unsupervised learning. Therefore, 
in this phase, the standard STDP was modified to develop a goal-directed 
learning approach. For this purpose, we proposed a reward modulated STDP 
adapted from Izhikevich (2007) as presented by Equation 3.

Dw(t) = [a + r(t)] z(t)                                                                                 (3)

The weight change Dw depends on a reinforcement signal r(t), obtained 
from Table 1, and an admissibility trace z(t), where zij(t) is the STDP weighted 
sum of weight changes Dwstdp.ij of neuron i (i.e. presynaptic) to neuron j (i.e. 
postsynaptic). a represents a constant of synaptic weight increase. Hence, the 
learning supervisory signal will be based on the r(t) value that modulates the 
z(t). The novelty of our work can be ascribed to a reward policy that derives 
r(t) (Table 1). The reward policy describes a learning scheme for a neural 
network in a reinforcement learning paradigm.

As described earlier, the number of fired neurons (spikes) in the 
response groups indicates a network response. From Table 1, it is assumed 
that RA and RB are the network responses in which RA is the target response. If 
the number of spikes in the target neuronal response group is twice higher than 
the opponent neuronal group, a strong reward signal is given to the network. If 
the number of spikes is just slightly higher, only a weak reward is given to the 
network. Meanwhile, a negative reward (penalty) is given to the network if the 
target neuronal response group indicates lower activity with lower spikes than 
its opponent. The reward signal r(t) could modulate the weight adjustments 
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provided by the standard STDP, z(t), that would eventually influence the 
weight connections during learning.

In this study, a motion is represented by a sequence of firings that 
indicates activation of certain spatially distributed neurons in the network. 
The biologically realistic learning algorithm with simple rules is the one of 
interest in this study. Furthermore, the algorithm should also be able to learn 
the association of a stimulus and a motion in a noisy setting with minimal 
assumptions on the dynamic properties of the network.

Table 1

Reward Policy

No. of spikes in the response group Reward signal

FA(dt) ≥ 2FB(dt) r(t - 1) + 0.5          strong +ve reward

FA(dt) < FB(dt) <  2FA(dt) 1 - Fj/ Fi                 weak +ve reward

FA(dt) < FB(dt) -0.1                         -ve reward

     
Note: Let RA be the target network response.

LEARNING SIMULATION EXPERIMENT

For learning simulation, fish trajectories were captured from 93 different videos 
with the specifications of 320x240 resolutions, and 5 frames per second. For 
this study, the x point values were normalised in which a motion point is an 
average value of x from three frames.

Prior to learning, for fish motion encoding, a recurrent spiking network 
was developed consisting of 1000 neurons with 800 excitatory (NE) and 200 
inhibitory (NI) neurons. The spiking properties of the neurons followed the 
Izhikevich spiking model rule (Izhikevich, 2003; 2006). For connectivity, 
each NE was connected to 100 neurons randomly. Each NI was connected to 
100 NE neurons (Figure 2). The transmission time delays between neurons 
were set randomly from 1 to 20 ms.

Each motion point (Sn) (the input stimulus) was represented by a 
group of 50 excitatory neurons. For a learning simulation, there were seven 
stimulus groups (S0 – S6) to represent seven different points. An example of 
motion-target (T) set is as follows, T ={(S4,S2)→RA, (S1,S2)→ RB , (S5,S3)→ RA 
, (S2,S1)→ RB}. The task of the neural network is to learn the association of 
motion trajectories and their target responses.
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Figure 2. Spiking neural network (NE = 80%, NI= 20%).

Each target response (the network response) was represented by a 
group of 100 excitatory neurons. Each trajectory was associated to a network 
response. For each simulation, there were two responses namely RA and RB, 
represented by two excitatory neuron groups with 100 neurons each. The 
remaining excitatory neurons and the inhibitory neurons were known as non-
selective neurons. The activity of the neurons contributed to the network 
dynamics. The inhibitory neurons were also non-selective to any stimulation 
and only acted as random network inhibition.

The proposed learning scheme was designed as follows:

At a particular simulated time, a neural network was presented with the 1. 
first motion point.
Following the first point, the network was then presented with the 2. 
second point of the motions. The number of motion trajectory points 
varied depending on the experiment tasks and settings. Each point was 
separated by 15 ms simulated time. The temporal delay was chosen from 
our initial experiment on the influence of temporal delays ranging from 
10 to 20 ms.  It was found that a 15 ms inter-stimulus interval (ISI) was 
the optimal delay in which the network response was influenced by the 
interaction between two associated points with no dominant stimulus in 
both that influence the response.
The number of spikes in the response group was then computed within 3. 
the 20 ms after the onset of the second point. The winning response 
group was the one with the most active neurons. The network was then 
rewarded or penalised depending on the response. The learning protocol 
is depicted in Figure 3.
The network was rewarded if the response pointed to the correct 4. 
match for a presented sequence, e.g. (S4,S2,S1) → A, of the fish motion 
trajectory.

7

LEARNING SIMULATION EXPERIMENT

For learning simulation, fish trajectories were captured from 93 different videos with the specifications of
320x240 resolutions, and 5 frames per second. For this study, the x point values were normalised in which a
motion point is an average value of x from three frames.

Prior to learning, for fish motion encoding, a recurrent spiking network was developed consisting of
1000 neurons with 800 excitatory (NE) and 200 inhibitory (NI) neurons. The spiking properties of the neurons
followed the Izhikevich spiking model rule (Izhikevich, 2003; 2006). For connectivity, each NE was
connected to 100 neurons randomly. Each NI was connected to 100 NE neurons (Figure 2). The transmission
time delays between neurons were set randomly from 1 to 20 ms.

Figure 2. Spiking neural network (NE = 80%, NI= 20%).

Each motion point (Sn) (the input stimulus) was represented by a group of 50 excitatory neurons. For
a learning simulation, there were seven stimulus groups (S0 – S6) to represent seven different points. An
example of motion-target (T) set is as follows, T ={(S4,S2 A, (S1,S2 B , (S5,S3 A , (S2,S1

RB}. The task of the neural network is to learn the association of motion trajectories and their target
responses.

Each target response (the network response) was represented by a group of 100 excitatory neurons.
Each trajectory was associated to a network response. For each simulation, there were two responses namely
RA and RB, represented by two excitatory neuron groups with 100 neurons each. The remaining excitatory
neurons and the inhibitory neurons were known as non-selective neurons. The activity of the neurons
contributed to the network dynamics. The inhibitory neurons were also non-selective to any stimulation and
only acted as random network inhibition.

The proposed learning scheme was designed as follows:
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The learning performance was measured as the average percentage of 5. 
correct recalls from 10 different simulated networks and probe trials 
(testing).

       

Figure 3. Motion learning protocol for a motion (S4, S2, S1).

RESULTS AND DISCUSSION

The learning simulation experiments were run in C++ and MATLAB 
programming. The experiments were two-fold, in which the algorithm was 
tested with motion learning of 2-sequence and 3-sequence trajectory points. 
The n-sequence indicated the ability of network memory that could be trained 
and how well the network could associate a set of trajectory points of particular 
motions.

For each learning trial, a motion was selected and presented randomly 
to the network. The group of neurons representing the first point was initially 
activated followed by the following points after an inter-stimulus interval. 
After the last trajectory points, the number of spikes in the response group was 
then observed to compute the network response.

Motion Learning with 2-Sequence Points

In this section, we trained the network to associate a motion of two points 
with a target network response, e.g. (Si, Sj) ® Rk. The network was trained 
with two conditions namely, motion with no repeating points and motion with 
repeating points. This was to investigate network confusion when presented 
with motion accompanied by different combinations of points that might have 
the same points with conflicting responses.

No repeating points

The aim of this experiment was to train the network with real fish motion 
trajectory for seq=2 (for no sequence with repeating points) association task. 

8

1. At a particular simulated time, a neural network was presented with the first motion point.
2. Following the first point, the network was then presented with the second point of the motions. The

number of motion trajectory points varied depending on the experiment tasks and settings. Each point was
separated by 15 ms simulated time. The temporal delay was chosen from our initial experiment on the
influence of temporal delays ranging from 10 to 20 ms. It was found that a 15 ms inter-stimulus interval
(ISI) was the optimal delay in which the network response was influenced by the interaction between two
associated points with no dominant stimulus in both that influence the response.

3. The number of spikes in the response group was then computed within the 20 ms after the onset of the
second point. The winning response group was the one with the most active neurons. The network was
then rewarded or penalised depending on the response. The learning protocol is depicted in Figure 3.

Figure 3. Motion learning protocol for a motion (S4, S2, S1).

4. The network was rewarded if the response pointed to the correct match for a presented sequence, e.g.
(S4,S2,S1 , of the fish motion trajectory.

5. The learning performance was measured as the average percentage of correct recalls from 10 different
simulated networks and probe trials (testing).

RESULTS AND DISCUSSION

The learning simulation experiments were run in C++ and MATLAB programming. The experiments were
two-fold, in which the algorithm was tested with motion learning of 2-sequence and 3-sequence trajectory
points. The n-sequence indicated the ability of network memory that could be trained and how well the
network could associate a set of trajectory points of particular motions.

For each learning trial, a motion was selected and presented randomly to the network. The group of
neurons representing the first point was initially activated followed by the following points after an inter-
stimulus interval. After the last trajectory points, the number of spikes in the response group was then
observed to compute the network response.

ISI ISI

S4 S2 S1

T
n

T
n+ISI

T
(n+ISI+ISI)

Response
Interval

Trial Delay
time

Trial n+1
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If the network responded correctly in accordance to the presented fish motion 
trajectory, the network was rewarded. If the network responded incorrectly, 
it was penalized accordingly. The learning of seq=2 and the target network 
response for fish motion are performed using Equation 4.

Learning set ={(S2,S1)→RA, (S3,S5)→RB , (S4,S2)→RA , (S6,S5)→RB }                       (4)

where Si and Sj are the stimuli of neuronal groups i and j, respectively, RA 
and RB are the response groups A and B, respectively.

In the learning set, all pairs consisting of the unique combination 
of motion points Sn were exclusively trained to respond to RA or RB. At this 
point, the conditions in which (Si,Sj)→RA and (Sj,Si)→RB were avoided. This 
preliminary experiment was just to see how well the network learned the 
association with minimal confusion.

With the exclusive points in fish motion learning, the network 
performance was 80.43% and 85.57% for training and testing, respectively. 
Figure 4 shows the spike raster plot of the network activity during learning 
after a number of trials. The response neurons activated were significant to 
their target response from the start to the end of the simulation.

The network model had been trained to perform the fish motion 
sequence learning with a target response, RA or RB. Figure 5 illustrates the 
learning result for four learning motions {(S2,S1)→A, (S3,S5)→B , (S4,S2)→A , 
(S6,S5)→B}. This is to show that the network could successfully associate all 
pairs to their target responses.

Figure 4. Spike raster plot of network activity during learning after 200 
trials for 2- sequence points.

10

Figure 4. Error! No text of specified style in document.. Spike raster plot of network activity during
learning after 200 trials for 2- sequence points.

Figure 5. Learning result for four learning motions, {(S2,S1) RA, (S3,S5) RB , (S4,S2) RA,
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Figure 5. Learning result for four learning motions, {(S2,S1)→ RA, 
(S3,S5)→ RB , (S4,S2)→ RA, 

 
(S6,S5)→ RB }) from one simulation

Learning with repeating points

The network was then trained with a set of fish motion with repeating points. 
In particular, they were motion consisting of (Si,Sj)→RA and (Sj,Si)→RB. 
With such conditions, the network performance was observed if the network 
could successfully learn not just the association between Si and Sj but also the 
sequence of Si…Sj. The learning set was as follows as in Equation 5.

     Learning set ={(S4,S2)→ RA, (S1,S2)→ RB , (S5,S3)→ RA , (S2,S1)→ RB }  (5)

where Si and Sj are the stimuli of neuronal groups i and j, respectively, RA 
and RB are the response groups A and B, respectively.

The average performances (correct recall rates) for 10 different 
simulated networks were 69.87% and 65.15% for both training and testing, 
respectively. In comparison to the learning with no repeating points, the network 
performance decreased. This indicated that high competition or interference 
existed when the network was probed with motion having conflicting target 
responses (Figure 6).
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learning after 200 trials for 2- sequence points.

Figure 5. Learning result for four learning motions, {(S2,S1) RA, (S3,S5) RB , (S4,S2) RA,
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Figure 6. Learning result for four learning motions with repeating, 
{(S4,S2)→ RA,   

               

     (S1,S2)→ RB ,(S5,S3)→ RA , (S2,S1)→ RB } from one simulation. 

Motion Learning with 3-Sequence Points

In the previous experiments, we trained the sequence with two points to train 
a network. The network only associated different stimulus groups with their 
target response, RA or RB. In the following experiments, this study investigated 
learning performance with three sequence learning. The goal was to train 
the network to discriminate motion with 3-sequence points using temporal 
sequence. From this experiment, we investigated the network ability to 
remember different motion in which each motion consisted of more than two 
points. The sequence learning for fish motion was performed as in Equation 
6.

Learning set ={(S4, S2,S1)→ RA, (S1,S2,S4)→ RB , (S5,S3,S2)→ RA , (S2,S1,S0)→ RB }   (6)

where Si and Sj are the stimuli of neuronal groups i and j, respectively, RA 
and RB are the response groups A and B, respectively.

The average performances for correct recall rates for 10 different 
simulated networks were 68.94% and 69.1% for training and testing, 

11

(S6,S5 B }) from one simulation

Learning with repeating points

The network was then trained with a set of fish motion with repeating points. In particular, they were motion
consisting of (Si,Sj) A and (Sj,Si) B. With such conditions, the network performance was observed if the
network could successfully learn not just the association between Si and Sj but also the sequence of Si…Sj.

The learning set was as follows as in Equation 5.

Learning set ={(S4,S2) RA, (S1,S2) RB , (S5,S3) RA , (S2,S1) RB } (5)

where Si and Sj are the stimuli of neuronal groups i and j, respectively, RA and RB are the response groups A
and B, respectively.

The average performances (correct recall rates) for 10 different simulated networks were 69.87% and
65.15% for both training and testing, respectively. In comparison to the learning with no repeating points, the
network performance decreased. This indicated that high competition or interference existed when the
network was probed with motion having conflicting target responses (Figure 6).

Figure 6. Learning result for four learning motions with repeating, {(S4,S2 A,
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respectively. From the experiment, by training the network consisting of 
motion with repeating points (e.g. (S4,S2,S1) →RA and (S1,S2,S4)→RB ), there 
was a positive impact on the performance of the network. Figure 7 illustrates 
the spike raster plot of network activity during learning after a number of 
trials.

Figure 7. Spike raster plot of network activity during learning after a 
number of trials for 3- point motion learning

Figure 8 illustrates the four sequence learning for the fish motion trajectory 
from one simulation. The fair performance was achieved with one motion, 
namely (S4, S2, S1) → RA, which showed incorrect recalls (Figure 8A) showing 
the evidence of high competition between (S1, S2, S4) → RB.
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Figure 7. Spike raster plot of network activity during learning after a number of trials for 3- point
motion learning

(S1,S2 B ,(S5,S3 A , (S2,S1 B } from one simulation.

Motion Learning with 3-Sequence Points

In the previous experiments, we trained the sequence with two points to train a network. The network only
associated different stimulus groups with their target response, RA or RB. In the following experiments, this
study investigated learning performance with three sequence learning. The goal was to train the network to
discriminate motion with 3-sequence points using temporal sequence. From this experiment, we investigated
the network ability to remember different motion in which each motion consisted of more than two points.
The sequence learning for fish motion was performed as in Equation 6.

Learning set ={(S4, S2,S1 A, (S1,S2,S4 B , (S5,S3,S2 A , (S2,S1,S0 B } (6)

where Si and Sj are the stimuli of neuronal groups i and j, respectively, RA and RB are the response groups A
and B, respectively.

The average performances for correct recall rates for 10 different simulated networks were 68.94%
and 69.1% for training and testing, respectively. From the experiment, by training the network consisting of
motion with repeating points (e.g. (S4,S2,S1 A and (S1,S2,S4 B ), there was a positive impact on the
performance of the network. Figure 7 illustrates the spike raster plot of network activity during learning after
a number of trials.

Response B

Response A

Neuron

Activity

Response RA Response RB Neuron activity
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Figure 8. Learning result for four 3-point motion, {(S4,S2,S1)→ RA, 
(S1,S2,S4)→ RB , 
             

(S5,S3,S2)→ RA ,  (S2,S1,S0)→ RB } from one simulation.

CONCLUSION

This study proposed motion trajectory learning using the reward modulated 
STDP in SNNs. Learning was experimented with real fish motion data obtained 
from fish4knowledge dataset. From the learning simulation experiments, it 
showed that the algorithm performed well in learning motion with no repeating 
points, in which there were no same points in a different sequence. In contrast, 
network confusion arose whenever learning consisted of repeating points. 
For future improvement, we think that the neural network requires a better 
network inhibition mechanism. With such a method, it could improve learning 
performance in a highly competitive environment.

We postulate that there is also a need to incorporate alternative stimulus 
encoding to increase memory capacity. In our approach, a stimulus was 
represented by a fixed group of excitatory neurons, and thus posed some 
limitations to our model for large-scale applications and especially for non-
linear classification problems. A solution to this problem could be to implement 
a network with polychronous groups. Such a model would allow a neuron to 
be a member of multiple groups with different synaptic transmission delays, 
hence it could maximise memory capacity.

13

Figure 8 illustrates the four sequence learning for the fish motion trajectory from one simulation. The fair
performance was achieved with one motion, namely (S4, S2, S1 A, which showed incorrect recalls (Figure
8A) showing the evidence of high competition between (S1, S2, S4 B.

Figure 8. Learning result for four 3-point motion, {(S4,S2,S1 A, (S1,S2,S4 B ,
(S5,S3,S2) RA , (S2,S1,S0) RB } from one simulation.

CONCLUSION

This study proposed motion trajectory learning using the reward modulated spike-time dependent plasticity
(STDP) in spatio-temporal neural network (SNNs). Learning was experimented with real fish motion data
obtained from fish4knowledge dataset. From the learning simulation experiments, it showed that the
algorithm performed well in learning motion with no repeating points, in which there were no same points in
a different sequence. In contrast, network confusion arose whenever learning consisted of repeating points.
For future improvement, we think that the neural network requires a better network inhibition mechanism.
With such a method, it could improve learning performance in a highly competitive environment.

We postulate that there is also a need to incorporate alternative stimulus encoding to increase
memory capacity. In our approach, a stimulus was represented by a fixed group of excitatory neurons, and
thus posed some limitations to our model for large-scale applications and especially for non-linear
classification problems. A solution to this problem could be to implement a network with polychronous

A B

C D
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This study concerns the human learning paradigm (i.e. reward-based 
learning) and spatio-temporal neural network dynamics, under a framework 
of motion learning. The key advantages of our learning model can be credited 
to its biological realism and computational simplicity. In our approach, the 
network is trained to learn associations between a set of trajectories and their 
targets via a reinforcement approach that closely resembles human learning. 
In the proposed learning scheme, no particular learning targets are required. 
Unlike most related studies in motion learning using spiking neural networks, 
the widely used approaches are supervisory which require a set of spike trains 
as the learning targets. This also requires additional encoding to represent the 
desired network outputs/responses. Moreover, not all systems can easily be 
provided with such encoded target output.

In addition, from our proposed scheme, learning can be applied in a 
simple way based on the STDP rule that counts correlation in spike timings, 
and firing rate. Our model uses a generic architecture of neural networks 
with minimal assumption about the network dynamics. We have shown that 
learning can be implemented in a stochastic manner within a noisy setting. The 
network has rich dynamics resulting from sparse and recurrent connectivity, 
synaptic transmission delays and background activity.
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