
321

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

How to cite this article:

Rukhiran, M., & Netinant, P. (2020). A practical model from multidimensional layering:
Personal finance information framework using mobile software interface operations.
Journal of Information and Communication Technology, 19(3), 321-349. https://
doi.org/10.32890/jict2020.19.3.2

A PRACTICAL MODEL FROM MULTIDIMENSIONAL LAYERING:
PERSONAL FINANCE INFORMATION FRAMEWORK USING

MOBILE SOFTWARE INTERFACE OPERATIONS

Meennapa Rukhiran & Paniti Netinant
College of Digital Innovation and Information Technology,

Rangsit University,Thailand

meennapa_ru@rmutto.ac.th; paniti.n@rsu.ac.th

ABSTRACT
End user involvement is crucial in improving software
development processes. Hence, nowadays user interface (UI) and
user experience (UX) are particularly concerned with end user
interactions in many software designs as most methodologies have
inconsistencies between design and implementation. Besides,
it is relatively difficult to make changes in complex software
and personal finance application is one of the more complex
software to design, develop, and adapt. This paper proposes
the development of a mobile personal finance application using
informative multidimensional layering. We have separated
functional data cutting across the relationships of three categories
and datasets showing operational semantics of dimensions, and
combined layers of three-dimensional information including
aspect elements through components. This study is concerned
with the corresponsive composition of end user features using
visual interfaces. It is illustrated in a Three-layer User Interface
Composition Model to transfer and compose layers, functional
data, aspect elements, and components to Graphical User
Interfaces (GUIs). Therefore, an integrated view of the software
system would make the design and implementation consistent
to support our framework in a more straightforward manner.

Received: 20/3/2020 Revised: 3/3/2020 Accepted: 20/3/2020 Published:11/6/2020

322

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

There have been a few studies which presented practical models
of mobile informative multidimensional layering. This research
applied aspect orientation and informative multidimensional
layering to present a better features model for mobile personal
finance application. We deliver a practical framework in the
application in all four phases of analysis, design, implementation,
and evaluation. In addressing the gap, this research proposes
a clearer operation of three-dimensional models, functional
data, and aspect elements that cut across through informative
multidimensional layering.

Keywords: Functional data, multidimensional data, mobile, software, user
interface.

INTRODUCTION

User Interface (UI) plays an important role in software development
(Sadowski & Zimmermann, 2019). Leach (2016) presented six primary
activities (requirements, design, coding, testing and integration, delivery
and maintenance) that a team of developers should devote to a software
development life cycle. User interfaces are discussed in the analysis process.
By accepting document software needs, the requirements of UI designs
must include a layout plan of menus, screens on a software system, and a
requirement traceability matrix. The process of UI design is specified after
the creation of process modeling, data modeling, and architecture design are
conducted. These basic designs has led us to comprehend the relationship
of functions, processes, data flows, hardware, software, and infrastructures
(Dennis, Wixom, & Roth, 2012) and to manage an end user information
system involving users (Tonder & Wesson, 2012; Usoro, 2013). Lastly, the
interface design illustrates how end users can use the software application.
Another principle which improved on Graphic User Interface (GUI), and
User Experience (UX) design was first introduced in 1990. UX is defined as
a person’s perception in response to the use of a product (Hinderks, Schrepp,
Mayo, Escalona, & Thomaschewski, 2019). The end user experience has led
designers and developers to identify consumer satisfaction in the process. In
the software development industry, the experience of a good user refers to an
evaluation of an end user interface that is easy to learn and efficient to use
(aesthetics, joy of use, and attractiveness). However, UI design management
is highly concerned that developers spend more time designing UI (Desolda,
Ardito, Costabile, & Matera, 2017; Kennard & Leaney, 2010). Hays (2014)
claims that complex user interfaces can encounter a delayed reaction time
and unsatisfied users. Moreover, sophisticated user interfaces can reduce
productivity (Sadowski, & Zimmermann, 2019). Hence, we believe that

323

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

paying attention to designing UI according to the users’ needs has tremendous
advantages in software progress.
 It is crucial to focus on developing a prototype software life cycle. All
phases of the software project are established from important information and
functional requirements of stakeholders. The needs of information requirements,
changes, operations, and representations are attributes of software quality and
the major concerns of collaborative access through a software system (Jallow,
Demian, Anumba, & Baldwin, 2017). These concerns has led us to the initial
research of designing multidimensional layering for supporting functional
data and aspect elements of a house bookkeeping software design (Rukhiran
& Netinant, 2017a). Our personal finance application design is based on three-
dimensional layering. The layers have the coordinates of X, Y, and Z, that
is, an axis belongs to expenditure, income, and liabilities, respectively. Each
dimension is separated into relative subdimensions. We define functional data
as a correlative relationship of the system information that cuts across in the
layering of three dimensions. Moreover, we have applied the principle of
separating concerns for identifying aspect elements. An aspect element is a
group of crosscutting functionalities. We can find these aspects repeatedly in
the processes of software development and then group them together. This is
called a set of aspect elements.
 While many research have been continuously applying Aspect-
Oriented Software Development (AOSD) in order to achieve a more effective
and efficient approach, we have rarely found that the principle of separation
of concerns is applied from the first analyzed phase till the end user review
phase. One disadvantage of the software design is that sometimes the UI is
implemented separately and explicitly from the software modeling (Jelinek
& Slavik, 2004). Kennard and Leaney (2010) observed that any phases
in designing need to be consistently, concerned. Moreover, our previous
work had proposed the concept design of separating concerns (Rukhiran
& Netinant, 2017b). Our current research concentrates on the challenge of
a fine granularity information design that is a significant design concern
to define a set of data, functional data, and aspect elements of layers. The
important research is how to develop a framework that can practically, simply,
enthusiastically, and aesthetically operate information, functions, aspects, and
layers with higher and better separation of concerns. We present a prototype
of the software development life cycle in all four phases of analysis, design,
implementation, and evaluation. Therefore, to address the gap, this research
will bring about more clearly, operations of the three-dimensional model and
functional data and aspect elements that cut across the dimensions. In areas
of visual user interfaces, the corresponsive design of an end user composition
is the cooperation between layering of dimensions and separating concerns
of each section. The interactive application design is based on an outcome of
composition sections at a weaving time. These concerns has led us to challenge

324

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

the development of informative multidimensional layering for supporting
semantic operations, representations, and separation of concerns from design
to mobile software interface operations. We will present the integrated views
to support a higher and better composition of interface operations in which a
personal finance information application is intended to make the system design
and interface consistent with the separation of concerns in various aesthetic
interface operations. Consequently, the Aspect-Oriented Approach (AOA)
seems to fully support the UI and UX as proposed . Besides, the evaluation of
GUIs to handle flexibility, efficiency of use, aesthetics and minimalist design
is enabled by applying different sections (layering) on the screen.

BACKGROUND

This section provides an overview on a separation of concerns, a survey
of a major concept using separation-based UI, aspect-oriented approaches,
multidimensional layering, and previous research in designing and developing
a personal finance information framework. We emphasize challenges to an
aspect-oriented approach for refining attributes of software quality and formerly
proposed solutions. We have defined the semantic operations of informative
three-dimensional layering among functional data, aspect elements, and
layering of the execution design stages in this research contribution.

Separation of Concerns

Separation of concerns is defined as a key principle of software design and
implementation (Panunzion & Vardanega, 2014a; Panunzion & Vardanega,
2014b). Basically, a concern is divided as a part of the software that represents a
single functionality. To handle the separation of concerns, an aspect orientation
is approached through new abstractions and composition mechanisms (Kiczales
et al., 1997; Netinant & Elrad, 2016). The principle of the AOSD is to augment
modularizations of crosscutting concerns (AI-Hudhud, 2015; Tanter, Figueroa,
& Tabaerau, 2014). The concerns can be called by a component, which is
dependent on a weaver. Weaving is the process of systematizing aspects and
other elements (AI-Hudhud, 2015; Jelinek & Slavik, 2004). The evolution
strategy of AOSD focuses on expressing the rules and definition of events,
conditions, and actions for supporting changes in computation environments
(Zhang & Rong, 2009). The dynamic evolution is concerned with a running
time. The first rule is an addition of a base component. The second rule
is an addition of an aspect component. The third rule is an addition of an
aspect connector. The fourth rule is an addition of attachments. Therefore,
the separation of concerns can result in a reusable, extensible, and adaptable
system (Diaz, Romero, Rubio, Soler, & Troya, 2005).

325

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Separation of Concerns in UI

Modularity is a fundamental concept of separating software modules using
components. A component aims to design data and functions for additional
restrictions (Barricelli, Cassano, Fogli, & Piccinno, 2019) that can push
forward from design to code. The final result transfers to the end users
using specific interfaces. Kennard and Leaney (2010) proposed the concept
of a large architectural design. A clear separation between layers should be
considered and the design should not lead us to a disorganized model. The
separation of concerns, including contents, applications, and devices should
be decoupled without any limitations in end user interactions. Thus, the user
is able to focus only on reaching information (Latizina & Beringer, 2012).
Gibbs, Dascalu, and Harris (2015) presented a separation-based UI for role
specifications. They proposed an architecture of a separation based UI diagram
using Domain Specific Language (DSL) to connect to the UI and codes for
improving the flexibility of software platforms, frameworks, and tools. By
applying the separation of concerns, a composition paradigm is developed to
manipulate at different levels (Ardito et al., 2015). The presentation layer of
UI design illuminates in supporting many device platforms and user levels.
Mirbel and Rivieres (2003) focused on separating views of UI and Business
Domain (BD). The article enables one to draw an application model dividing
it into two views as mentioned. UML dependencies and UML actions relating
to the design are specially provided. Therefore, the association between UI
and BD supports the analysis and design phase of the software development
beneficially.

Aspect-Oriented Approach

The challenges in software design projects led us to develop higher quality
attributes throughout the software development life cycle (Silveira, Cunha,
& Lisboa, 2014). The separation of concerns was applied for many reasons,
such as to reduce complexity, improve modularity, to enable compensability,
extensibility, reusability, and adaptability (Diaz et al., 2005; Pekilis, 2002;
Raheman, Maringanti, & Rath, 2018). The separation of concerns delivers
the principle of designing and programming paradigms of an aspect-oriented
approach using the execution of weaving instead of calling the functionalities
directly, to design individual concerns, including in programming languages
(Sommerville, 2014) such as class, method, and procedure, etc. The
modularization is improved by defining new constructions. The encapsulation
of crosscutting concerns is divided into single modules named aspects. The
aspect elements are the smallest functions that can be cut across a code
program. Hoffman and Eugster (2008) posited the ability of aspects that are
not only the separation of concerns but the modularization is transformed
into reusable components. The goals of the design are to reduce coupling and

326

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

increase cohesion by counting the number of modules named as pointcut. A
pointcut is defined as a state selection of particular joint points. The separation
of concerns in designing mobile software was proposed by Netinant and Elrad
(2016). A Communication Closed Layer (CCL) provides the implementation
of an aspect-oriented approach for avoiding code tangling. The process of the
layer can support a clean integration between the components (processes) and
composition layer software. An aspect-oriented approach has two principles:
(1) to decompose a software system into a group of aspects known as concerns
(Butting, Eikermann, Kautz, Rumpe, & Wortmann, 2019; Kumar, Kumar, &
Iyyappan, 2016) and (2) to compose crosscutting concerns between aspects
and core modules using a weaving process of a joint point (Muck & Frohlich,
2014).

Review on Multidimensional Layering

A multidimensional system is captured via linear transformations by D’Andrea
(1999). A set of multinomial functions can handle systems with many
inputs and outputs, equations and operators. The set of functions performs
through a multidimensional system. Pedersen and Jensen (1999) stated that
multidimensional layering deals with complex data. The multidimensions
represent a set of categories with as many relationships as the dimensions
along with the hierarchical presentations. The layering strategy is one of the
decomposition techniques for a software engineering solution, such as to
comprehend a complex software system and to solve different perspectives
from different audiences (Eeles, 2001). The primary strategy of the
multidimensional layering is for software reusability and maintainability. The
layering influences structures of software models. A layered multidimensional
modeling was described by Boukraa, Boussaid, Bentayeb, and Zegour (2013)
for supporting complex entities. The entity is separated from the UML classes.
The set of classes can be composed of a whole conceptual entity using layers.
The layer is used to share the same entities (objects). The layer of data cube
provides details of structures in each dimension that can be called orderly.
In the field of an aspect-oriented approach, Multi-Dimensional Separation
of Concerns (MDSC) is widely used for software architecture (Lin-lin et al.,
2008). MDSC allows for separation of concerns to execute multidimensions
and to refine them into concerns, simultaneously. This dynamic ability can
address new concerns and configure relationships between components
without changing the behaviour of the system.

Early Studies on House Bookkeeping Software Design Using Aspect-
Oriented Approach

Our recent AOSD is designed to support house bookkeeping software by
separating functional data from the aspect elements. In this recent work, we

327

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

proposed functional data in a three-dimensional layering to present relationships
among sets of data. There are three dimensions (income, expenditure, and
liabilities) divided into a series of data concerns. Each dimension is categorized
into smaller datasets shown in our latest work (Rukhiran & Netinant, 2017a).
The data of house bookkeeping is divided into three concerns as shown in
Table 1.

Table 1.

Set of Data for House Bookkeeping and Personal Finance

Dimension Sub-dimension Functional data

Income (I) Earned Income (EI) working, owning a business,
consulting, gambling

Portfolio Income (PoI), trading paper assets, selling real
estate, investment

Passive Income (PaI) rental income, bonus, insurance,
retirement, interest, bank
interest, stocks

Expenditure (E) Daily Expenses (DE) food, transportation

Personal Expenses (PE) clothing, travel, sports, books,
social & entertainment

House Expenses (HE) mobile phone bill, Internet,
repairing equipment, parking fee

Family Expenses (FE) tuition fee, alimony, medical fee,
donation

Liabilities (L) Current Liabilities (CL) credit card debt, home equity
loan, interest, taxes, rental
mortgage

Long-term Liabilities (LL) bonds payable, notes payable,
bank loan, deferred revenue,
mortgage

 The functional data initially records from one field to n fields in table
names. Hence, whenever there is a set of n-tuples we let the functional data set
 The aspect elements are defined as a
set of computational properties (e.g., insert, update, delete, day, month,
year, and total) which starts corporately from more than one aspect to m

7

Dimension Sub-dimension Functional data

investment
Passive Income (PaI) rental income, bonus, insurance, retirement,

interest, bank interest, stocks
Expenditure (E) Daily Expenses (DE) food, transportation

Personal Expenses (PE) clothing, travel, sports, books, social &
entertainment

House Expenses (HE) mobile phone bill, Internet, repairing
equipment, parking fee

Family Expenses (FE) tuition fee, alimony, medical fee, donation
Liabilities (L) Current Liabilities (CL) credit card debt, home equity loan, interest,

taxes, rental mortgage
Long-term Liabilities (LL) bonds payable, notes payable, bank loan,

deferred revenue, mortgage

 The functional data initially records from one field to n fields in table names. Hence,

whenever there is a set of n-tuples we let the functional data set Functional Data ∪ {F1, F2,
F3, …, Fn}.The aspect elements are defined as a set of computational properties (e.g., insert, update,

delete, day, month, year, and total) which starts corporately from more than one aspect to m aspects.

The aspect element is a sequence of methodologies from 1 to m. The aspect element sets

Aspect Elements ∪ {A1, A2, A3, …, Am}. An object is an execution of calling the aspect elements and

the functional data using crosscutting concern at a higher level. We assume a weaver to call the object

of the final execution by using the functional formula n x m for crosscutting concerns shown in Figure

1. Weaving is the process of transforming to solve the scattered solutions and avoid tangled

methodologies.

 Functional Data Aspect Elements

Figure 1. Execution design of aspect-oriented approach.

Composition in Aspect Orientation

 1 … n 1 … m

 Table
Name

 Method

Object
(Transaction)

m x n
 Weaver

7

Dimension Sub-dimension Functional data

investment
Passive Income (PaI) rental income, bonus, insurance, retirement,

interest, bank interest, stocks
Expenditure (E) Daily Expenses (DE) food, transportation

Personal Expenses (PE) clothing, travel, sports, books, social &
entertainment

House Expenses (HE) mobile phone bill, Internet, repairing
equipment, parking fee

Family Expenses (FE) tuition fee, alimony, medical fee, donation
Liabilities (L) Current Liabilities (CL) credit card debt, home equity loan, interest,

taxes, rental mortgage
Long-term Liabilities (LL) bonds payable, notes payable, bank loan,

deferred revenue, mortgage

 The functional data initially records from one field to n fields in table names. Hence,

whenever there is a set of n-tuples we let the functional data set Functional Data ∪ {F1, F2,
F3, …, Fn}.The aspect elements are defined as a set of computational properties (e.g., insert, update,

delete, day, month, year, and total) which starts corporately from more than one aspect to m aspects.

The aspect element is a sequence of methodologies from 1 to m. The aspect element sets

Aspect Elements ∪ {A1, A2, A3, …, Am}. An object is an execution of calling the aspect elements and

the functional data using crosscutting concern at a higher level. We assume a weaver to call the object

of the final execution by using the functional formula n x m for crosscutting concerns shown in Figure

1. Weaving is the process of transforming to solve the scattered solutions and avoid tangled

methodologies.

 Functional Data Aspect Elements

Figure 1. Execution design of aspect-oriented approach.

Composition in Aspect Orientation

 1 … n 1 … m

 Table
Name

 Method

Object
(Transaction)

m x n
 Weaver

328

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

aspects. The aspect element is a sequence of methodologies from 1 to m.
The aspect element sets An object is an
execution of calling the aspect elements and the functional data using
crosscutting concern at a higher level. We assume a weaver to call the object
of the final execution by using the functional formula n x m for crosscutting
concerns shown in Figure 1. Weaving is the process of transforming to solve
the scattered solutions and avoid tangled methodologies.

Figure 1. Execution design of aspect-oriented approach.

Composition in Aspect Orientation

The main function of an aspect-oriented technique is to decompose concerns
and methods into aspects. The aspects can be cut across functional components,
and composing components and aspects to execute in an implementation phase.
A composition is defined as an act of putting the various elements together
(Oxford, 2011). Pekilis (2002) stated that the composition of correspondences
within a particular software component or system that the construction depends
on designing formalism. The composition rules are to integrate relationships
of abstract declarations and implementations of base elements (classes),
crosscutting elements (aspects), and crosscutting relationships (classes and
aspects) (Silveira, Cunha, & Lisboa, 2014). Rosenmuller, Siegmund, Thum,
and Saake (2011) focused on the multi-dimensional variability model which
is an extension of the MDSC design of Tarr, Ossher, Harrison, and Sutton
(1999). Examples of a variability dimension are: the execution environment
of a program (e.g. operating system and hardware), the context at a running
time (e.g. time, space and user), and non-functional properties (e.g. security
and quality of service). There are three alternative mechanisms (inheritance,
superimposition and aggregation) to compose the variability model for a
clean separation of variability dimensions. This composition technique can be
highly reused modules.

7

Dimension Sub-dimension Functional data

investment
Passive Income (PaI) rental income, bonus, insurance, retirement,

interest, bank interest, stocks
Expenditure (E) Daily Expenses (DE) food, transportation

Personal Expenses (PE) clothing, travel, sports, books, social &
entertainment

House Expenses (HE) mobile phone bill, Internet, repairing
equipment, parking fee

Family Expenses (FE) tuition fee, alimony, medical fee, donation
Liabilities (L) Current Liabilities (CL) credit card debt, home equity loan, interest,

taxes, rental mortgage
Long-term Liabilities (LL) bonds payable, notes payable, bank loan,

deferred revenue, mortgage

 The functional data initially records from one field to n fields in table names. Hence,

whenever there is a set of n-tuples we let the functional data set Functional Data ∪ {F1, F2,
F3, …, Fn}.The aspect elements are defined as a set of computational properties (e.g., insert, update,

delete, day, month, year, and total) which starts corporately from more than one aspect to m aspects.

The aspect element is a sequence of methodologies from 1 to m. The aspect element sets

Aspect Elements ∪ {A1, A2, A3, …, Am}. An object is an execution of calling the aspect elements and

the functional data using crosscutting concern at a higher level. We assume a weaver to call the object

of the final execution by using the functional formula n x m for crosscutting concerns shown in Figure

1. Weaving is the process of transforming to solve the scattered solutions and avoid tangled

methodologies.

 Functional Data Aspect Elements

Figure 1. Execution design of aspect-oriented approach.

Composition in Aspect Orientation

 1 … n 1 … m

 Table
Name

 Method

Object
(Transaction)

m x n
 Weaver

7

Dimension Sub-dimension Functional data

investment
Passive Income (PaI) rental income, bonus, insurance, retirement,

interest, bank interest, stocks
Expenditure (E) Daily Expenses (DE) food, transportation

Personal Expenses (PE) clothing, travel, sports, books, social &
entertainment

House Expenses (HE) mobile phone bill, Internet, repairing
equipment, parking fee

Family Expenses (FE) tuition fee, alimony, medical fee, donation
Liabilities (L) Current Liabilities (CL) credit card debt, home equity loan, interest,

taxes, rental mortgage
Long-term Liabilities (LL) bonds payable, notes payable, bank loan,

deferred revenue, mortgage

 The functional data initially records from one field to n fields in table names. Hence,

whenever there is a set of n-tuples we let the functional data set Functional Data ∪ {F1, F2,
F3, …, Fn}.The aspect elements are defined as a set of computational properties (e.g., insert, update,

delete, day, month, year, and total) which starts corporately from more than one aspect to m aspects.

The aspect element is a sequence of methodologies from 1 to m. The aspect element sets

Aspect Elements ∪ {A1, A2, A3, …, Am}. An object is an execution of calling the aspect elements and

the functional data using crosscutting concern at a higher level. We assume a weaver to call the object

of the final execution by using the functional formula n x m for crosscutting concerns shown in Figure

1. Weaving is the process of transforming to solve the scattered solutions and avoid tangled

methodologies.

 Functional Data Aspect Elements

Figure 1. Execution design of aspect-oriented approach.

Composition in Aspect Orientation

 1 … n 1 … m

 Table
Name

 Method

Object
(Transaction)

m x n
 Weaver

329

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

 MULTIDIMENSIONAL LAYERING DEFINITION

Separation of Data, Function and Layers

A new idea of the dimensional layering is to describe the sets of data divided
into three concerns. The layers consist of concerns which have the coordinates
of X, Y and Z, that is, an axis belongs to expenditure, income, and liabilities,
respectively. Each dimension is separated into relative subdimensions. The
composition of the sets of data can represent the dataset of personal finance
for data execution and management. In Figure 2, the data of personal finance
can express an infinite series from 1 to n. In fact, the column name containing
sets of data relates to an infinite number of planes for supporting three-
dimensional coordinate layering. The Cartesian product is generalized across
three categories of datasets. The one-dimensional layer is a line of each axis.
For the formal notation of one layer, we set the formal notation = {{I}, {E},
{L}}. For example, the Cartesian product of an income is denoted by I. The
two-dimensional layer is a coordinate plane between two axes. For the formal
notation of two layers, we set the formal notation = {{I, E}, {I, L}, {E, L}}.

Figure 2. Infinite series of a set of house bookkeeping dimensions.

For example, the Cartesian product of an income record and an expenditure
record is denoted by I x E. We set the cross product I x E = {(i, e) | i I and
e E}, I x L = {(i, l) | i L and i L}, E x L = {(e, l) | e E and l L}.
The three-dimensional layer is a coordinate plane among three axes. For the
formal notation of three layers, we set the formal notation = {{I, E, L}}. For
example, the Cartesian product of an income record, an expenditure record
and a liabilities record is denoted by I x E x L. Thus, the concept of Cartesian
product can be extended to more than three sets. We define the concept of

9

notation of three layers, we set the formal notation = {{I, E, L}}. For example, the Cartesian product

of an income record, an expenditure record and a liabilities record is denoted by I x E x L. Thus, the

concept of Cartesian product can be extended to more than three sets. We define the concept of an

ordered n-tuple. The order b-tuple is a set of n categories that we have divided as a subdimension of

each dimension. We express D as a dimension using the set notation D = {D1, D2, D3, …, Dn}. Income =
{I ∈ D | I is a set of income records}. Expenditure = {E ∈ D | E is a set of expenditure records}.

Liabilities = {L ∈ D | L is a set of liabilities records}. The functional data is a Cartesian product from

one dimension to three dimensions. In addition, the aspect element is a sequence of methodologies

from 1 to m. An aspect sets A ∪ {A1, A2, A3, …, Am}. For all crosscuttings of the dimensions and

aspects, the function formula n X m is the formulae. Thus, the design can support the

multidimensional layering among its dimensions.

Figure 2. Infinite series of a set of house bookkeeping dimensions.

SEMANTIC MULTIDIMENSIONAL LAYERING

The multidimensional layering is described as the sets of data divided into three concerns. The sets of

data can represent the composition of dimensional layering with the different information.

The functional data is decomposed from the information input. Figure 3 shows the formulation of

cutting points on three-dimensional layering. The layering has provided three different semantics: an

income layer, an expenditure layer, and a liabilities layer. The layer provides the appropriate

contextual information for data manipulation. Each dimension consists of a set of multi-layers. For

example, the y-axis of an income layering, Income = {I1, I2, I3, …, In}, refers to one layering of

1 2 3 … n
… m

Table
Name

Table
Name

X axis: Set of expenditure

Y axis: Set of income

Z axis: Set of liabilities

…

330

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

an ordered n-tuple. The order b-tuple is a set of n categories that we have
divided as a subdimension of each dimension. We express D as a dimension
using the set notation D = {D1, D2, D3, …, Dn}. Income = {I D | I is a set of
income records}. Expenditure = {E D | E is a set of expenditure records}.
Liabilities = {L D | L is a set of liabilities records}. The functional data is
a Cartesian product from one dimension to three dimensions. In addition, the
aspect element is a sequence of methodologies from 1 to m. An aspect sets
A {A1, A2, A3, …, Am}. For all crosscuttings of the dimensions and aspects,
the function formula n X m is the formulae. Thus, the design can support the
multidimensional layering among its dimensions.

SEMANTIC MULTIDIMENSIONAL LAYERING

The multidimensional layering is described as the sets of data divided into
three concerns. The sets of data can represent the composition of dimensional
layering with the different information. The functional data is decomposed
from the information input. Figure 3 shows the formulation of cutting points
on three-dimensional layering. The layering has provided three different
semantics: an income layer, an expenditure layer, and a liabilities layer. The
layer provides the appropriate contextual information for data manipulation.
Each dimension consists of a set of multi-layers. For example, the y-axis
of an income layering, Income = {I1, I2, I3, …, In}, refers to one layering of
subdimensions which is divided from a user’s data categories (e.g. a passive
income and an earned income). There are two types of quantifiers to express
the formal notations for computing functional data from datasets. The universal
quantifier is for a selection of all income records from a layering. This is
expressed in Equation 1 as follows,

 (1)

The existential quantifier () is for some income records in the universe. This
is expressed in Equation 2 as follows,

(2)

The quantifiers can also be used to express through the layering of two
dimensions or more. For example, a selection of a display component is to
compare between all categories of income and some categories of expenditure.
The sample of two-layering composition named functional data is set in
Equation 3 as follows,

(3)

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in
10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

331

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

The dataset of the dimensional layering from one to one horizontal or vertical
or oblique line can be taken to execute with some aspects through the weaver.
A combination of functional data is from a set of data between layers. A
transformation of weaving including the functional data and the aspect
elements are cut across by a method call. A symbol of crosscutting concerns
is assigned using A set of data in the multidimensional on multi-layers is
designed supporting the crosscutting concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations
4 to 7. For instance, the layering of an income dimension computes to display an
amount of salary categories in May 2019. The transformation of weaving must
be executed through the functional data of an income layering and the aspects
are: type, total, month, and year (Figure 3 [1]). We let the type = {Incomesalary:
Salary Earn Income (EI), we express a type aspect to call subdimensions}, the
total = {sum(): }, the month = {May}, the year = {2019}. For each execution,
an amount of salary categories in May 2019, is computed in Equation 4.

However, at the same pointcut, an amount of salary categories can represent
the information differently. The aspects are composited relatively but the same
aspects can be executed with different semantics depending on the parameters
as shown in Figure 3 [2]. We call an amount of income in May 2018. We let
the type = {Incomesalary}, the total = {sum(): }, the month = {May}, the
year = {2018}. By computing, the statement is assigned in Equation 5.

The formula is expressed using a composition of two layering such as for a
cutting point from one horizontal and vertical layer to become two layering in
order to compute relatively between two dimensions. For instance in Figure
3 [3], the financial statement computed a balance of income and expenditure
from 1st–15th March 2019. We set the type = {Income, Expenditure}, the total
= {sum(): }, The day = {1, 2, 3, …, 15}, the month = {March}, the year =
{2019}. This is expressed in Equation 6 as follows,

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in 10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

11

May 2018. We let the type = {Incomesalary}, the total = {sum(): ∑ n}, the month = {May}, the year =

{2018}. By computing, the statement is assigned in Equation 5.

∃Incomesalary TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2018) (5)

 The formula is expressed using a composition of two layering such as for a cutting point from

one horizontal and vertical layer to become two layering in order to compute relatively between two

dimensions. For instance in Figure 3 [3], the financial statement computed a balance of income and

expenditure from 1st–15th March 2019. We set the type = {Income, Expenditure}, the total = {sum():

∑ n}, The day = {1, 2, 3, …, 15}, the month = {March}, the year = {2019}. This is expressed in

Equation 6 as follows,

(∃Income TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))U

(∃Expenditure TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))

or

(∃Income U ∃Expenditure) TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year,

Year = 2019)) (6)

 The three layering is designed supporting the computation of three dimensions for showing

the amount of income, expenditure, and liabilities. In Figure 3 [4], the relation of a cutting point is

called from one horizontal, vertical and oblique line. The comparison of three domain concerns can

represent a balance of income, expenditure, and liabilities in June 2019. We let the type = {Income,

Expenditure, Liabilities}, the total = {sum(): ∑ n}, the month = {June}, the year = {2019}. This is

computed in Equation 7 as follows,

(∃Income TotalU(Month, Month = June)U(Year, Year = 2019))U(∃Expenditure TotalU(Month,

Month = June)U(Year, Year = 2019))U(∃Liability TotalU(Month, Month = June)U(Year, Year =

2019))

or

(∃Income U ∃Expenditure U ∃Liability) (TotalU(Month, Month = June)U(Year, Year = 2019)) (7)

11

May 2018. We let the type = {Incomesalary}, the total = {sum(): ∑ n}, the month = {May}, the year =

{2018}. By computing, the statement is assigned in Equation 5.

∃Incomesalary TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2018) (5)

 The formula is expressed using a composition of two layering such as for a cutting point from

one horizontal and vertical layer to become two layering in order to compute relatively between two

dimensions. For instance in Figure 3 [3], the financial statement computed a balance of income and

expenditure from 1st–15th March 2019. We set the type = {Income, Expenditure}, the total = {sum():

∑ n}, The day = {1, 2, 3, …, 15}, the month = {March}, the year = {2019}. This is expressed in

Equation 6 as follows,

(∃Income TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))U

(∃Expenditure TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))

or

(∃Income U ∃Expenditure) TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year,

Year = 2019)) (6)

 The three layering is designed supporting the computation of three dimensions for showing

the amount of income, expenditure, and liabilities. In Figure 3 [4], the relation of a cutting point is

called from one horizontal, vertical and oblique line. The comparison of three domain concerns can

represent a balance of income, expenditure, and liabilities in June 2019. We let the type = {Income,

Expenditure, Liabilities}, the total = {sum(): ∑ n}, the month = {June}, the year = {2019}. This is

computed in Equation 7 as follows,

(∃Income TotalU(Month, Month = June)U(Year, Year = 2019))U(∃Expenditure TotalU(Month,

Month = June)U(Year, Year = 2019))U(∃Liability TotalU(Month, Month = June)U(Year, Year =

2019))

or

(∃Income U ∃Expenditure U ∃Liability) (TotalU(Month, Month = June)U(Year, Year = 2019)) (7)

 (5)

 (6)

10

subdimensions which is divided from a user’s data categories (e.g. a passive income and an earned

income). There are two types of quantifiers to express the formal notations for computing functional

data from datasets. The universal quantifier (∀) is for a selection of all income records from a

layering. This is expressed in Equation 1 as follows,

∀income, income > 1 (1)

The existential quantifier (∃) is for some income records in the universe. This is expressed in

Equation 2 as follows,

∃income, income > 1 (2)

The quantifiers can also be used to express through the layering of two dimensions or more.

For example, a selection of a display component is to compare between all categories of income and

some categories of expenditure. The sample of two-layering composition named functional data is set

in Equation 3 as follows,

∀income U ∃expenditure (3)

The dataset of the dimensional layering from one to one horizontal or vertical or oblique line can be

taken to execute with some aspects through the weaver. A combination of functional data is from a set

of data between layers. A transformation of weaving including the functional data and the aspect

elements are cut across by a method call. A symbol of crosscutting concerns is assigned using

xx. A set of data in the multidimensional on multi-layers is designed supporting the crosscutting

concerns (functional data aspect).

 Operational semantics of dimensions and layers are expressed in Equations 4 to 7. For

instance, the layering of an income dimension computes to display an amount of salary categories in

May 2019. The transformation of weaving must be executed through the functional data of an income

layering and the aspects are: type, total, month, and year (Figure 3 [1]). We let the type =

{Incomesalary: Salary ⊆ Earn Income (EI), we express a type aspect to call subdimensions}, the total =

{sum(): ∑ n}, the month = {May}, the year = {2019}. For each execution, an amount of salary

categories in May 2019, is computed in Equation 4.

∃Income������ TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2019)

or ∑ (MayU2019)n
∃incomesalary ∈ Income (4)

 However, at the same pointcut, an amount of salary categories can represent the information

differently. The aspects are composited relatively but the same aspects can be executed with different

semantics depending on the parameters as shown in Figure 3 [2]. We call an amount of income in

(4)

332

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

 The three layering is designed supporting the computation of three
dimensions for showing the amount of income, expenditure, and liabilities.
In Figure 3 [4], the relation of a cutting point is called from one horizontal,
vertical and oblique line. The comparison of three domain concerns can
represent a balance of income, expenditure, and liabilities in June 2019. We
let the type = {Income, Expenditure, Liabilities}, the total = {sum(): },
the month = {June}, the year = {2019}. This is computed in Equation 7 as
follows,

Figure 3. Formulation and execution of cutting points on three-dimensional
layering.

INFORMATIVE MULTIDIMENSIONAL
OPERATION FRAMEWORK

By composing the three-dimensional layering and the aspect elements for
data execution and management, an integration stage of layering through
components using a weaver is shown in Figure 4. The composition of the

11

May 2018. We let the type = {Incomesalary}, the total = {sum(): ∑ n}, the month = {May}, the year =

{2018}. By computing, the statement is assigned in Equation 5.

∃Incomesalary TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2018) (5)

 The formula is expressed using a composition of two layering such as for a cutting point from

one horizontal and vertical layer to become two layering in order to compute relatively between two

dimensions. For instance in Figure 3 [3], the financial statement computed a balance of income and

expenditure from 1st–15th March 2019. We set the type = {Income, Expenditure}, the total = {sum():

∑ n}, The day = {1, 2, 3, …, 15}, the month = {March}, the year = {2019}. This is expressed in

Equation 6 as follows,

(∃Income TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))U

(∃Expenditure TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))

or

(∃Income U ∃Expenditure) TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year,

Year = 2019)) (6)

 The three layering is designed supporting the computation of three dimensions for showing

the amount of income, expenditure, and liabilities. In Figure 3 [4], the relation of a cutting point is

called from one horizontal, vertical and oblique line. The comparison of three domain concerns can

represent a balance of income, expenditure, and liabilities in June 2019. We let the type = {Income,

Expenditure, Liabilities}, the total = {sum(): ∑ n}, the month = {June}, the year = {2019}. This is

computed in Equation 7 as follows,

(∃Income TotalU(Month, Month = June)U(Year, Year = 2019))U(∃Expenditure TotalU(Month,

Month = June)U(Year, Year = 2019))U(∃Liability TotalU(Month, Month = June)U(Year, Year =

2019))

or

(∃Income U ∃Expenditure U ∃Liability) (TotalU(Month, Month = June)U(Year, Year = 2019)) (7)

 11

May 2018. We let the type = {Incomesalary}, the total = {sum(): ∑ n}, the month = {May}, the year =

{2018}. By computing, the statement is assigned in Equation 5.

∃Incomesalary TotalU(Type, Type = salary)U(Month, Month = May)U(Year, Year = 2018) (5)

 The formula is expressed using a composition of two layering such as for a cutting point from

one horizontal and vertical layer to become two layering in order to compute relatively between two

dimensions. For instance in Figure 3 [3], the financial statement computed a balance of income and

expenditure from 1st–15th March 2019. We set the type = {Income, Expenditure}, the total = {sum():

∑ n}, The day = {1, 2, 3, …, 15}, the month = {March}, the year = {2019}. This is expressed in

Equation 6 as follows,

(∃Income TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))U

(∃Expenditure TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year, Year = 2019))

or

(∃Income U ∃Expenditure) TotalU(Day, Day = {1, 2, 3, …,15})U(Month, Month = March)U(Year,

Year = 2019)) (6)

 The three layering is designed supporting the computation of three dimensions for showing

the amount of income, expenditure, and liabilities. In Figure 3 [4], the relation of a cutting point is

called from one horizontal, vertical and oblique line. The comparison of three domain concerns can

represent a balance of income, expenditure, and liabilities in June 2019. We let the type = {Income,

Expenditure, Liabilities}, the total = {sum(): ∑ n}, the month = {June}, the year = {2019}. This is

computed in Equation 7 as follows,

(∃Income TotalU(Month, Month = June)U(Year, Year = 2019))U(∃Expenditure TotalU(Month,

Month = June)U(Year, Year = 2019))U(∃Liability TotalU(Month, Month = June)U(Year, Year =

2019))

or

(∃Income U ∃Expenditure U ∃Liability) (TotalU(Month, Month = June)U(Year, Year = 2019)) (7)

(7)

12

 Figure 3. Formulation and execution of cutting points on three-dimensional layering.

INFORMATIVE MULTIDIMENSIONAL OPERATION FRAMEWORK

By composing the three-dimensional layering and the aspect elements for data execution and

management, an integration stage of layering through components using a weaver is shown in Figure

4. The composition of the informative multidimensional layering is the extensional framework of the

early stage of this study (Figure 1). We illustrate the combination of layering and pointcuts for data

manipulation. There are two method calls for the execution of weaving. The combination is composed

of functional data and aspect elements. The weaver is an analytical operation to call particular objects

(three-dimensional layering and pointcuts) into a component. The components are created following

the personal finance application requirement specifications. The samples of the component names are

DisplayTotal, CompareStatement, InsertAccount, UpdateAccount, and DeleteAccount. For example,

the DisplayTotal component displays the total income. In running time, the component consists of

many jointly crosscutting points such as income, date, type, and total aspect. Each one is a sequence

of methodologies from 1 to n components depending on the particular call of an end user interaction.

Set of Data: Income

Set of Data: Expenditure

Set of Data: Liabilities

. . .

[1] ∃income������ Total U Type, Type = Salary U Month,
Month = May U Year, Year = 2019

[2] ∃income������ Total U Type, Type = Salary U Month,
 Month = May U Year, Year =2018

[3] (∃Income U ∃Expenditure) Total U (Day, Day =
{1,2,3,…,15}) U (Month, Month = March) U (Year ,

Year = 2019)

[4] (∃Income U ∃Expenditure U ∃Liability) (Total U
(Month, Month = June) U (Year, Year = 2019))

333

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

informative multidimensional layering is the extensional framework of the
early stage of this study (Figure 1). We illustrate the combination of layering and
pointcuts for data manipulation. There are two method calls for the execution
of weaving. The combination is composed of functional data and aspect
elements. The weaver is an analytical operation to call particular objects (three-
dimensional layering and pointcuts) into a component. The components are
created following the personal finance application requirement specifications.
The samples of the component names are DisplayTotal, CompareStatement,
InsertAccount, UpdateAccount, and DeleteAccount. For example, the
DisplayTotal component displays the total income. In running time, the
component consists of many jointly crosscutting points such as income, date,
type, and total aspect. Each one is a sequence of methodologies from 1 to n
components depending on the particular call of an end user interaction.

Figure 4. Integration stage through components.

13

 Figure 4. Integration stage through components.

To support the design of the multidimensional information layering, Figure 5 represents the

architecture of a Three-layer User Interface Composition Model (TUICM). The UI layer on top,

facilitates the visual page that allows the end users to interact with menus and retrieve information

records on output devices. The UI layers communicate with components and data layers of a software

system for manipulating data from the lower layers. The component layer provides components that

decompose functional data (FD) and aspect elements (AE). Each FD and AE is called to express an

execution to the top layer. The data layer manipulates data acquisition from the different calling

stages through the three-dimensional layering.

DeleteTransaction Executions of weaving

pointcuts

Week

Month

Year

Type

Photo

Total

layering

UpdateTransaction

InsertTransaction

CompareStatement

…

DisplayTotal

Type (Type 1, Type 2, … , Type n)
Total (Total 1, Total 2, … , Total n)

Income (I 1, I 2, … , I n)

 …

Day

Jo
in

t p
oi

nt

…

Date (Date 1, Date 2, … , Date n)

 Table
Name

…

Select (Condition for
dimensions)

an expenditure
axis

an income
axis

a liabilities
axis

334

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

To support the design of the multidimensional information layering, Figure
5 represents the architecture of a Three-layer User Interface Composition
Model (TUICM). The UI layer on top, facilitates the visual page that allows
the end users to interact with menus and retrieve information records on output
devices. The UI layers communicate with components and data layers of a
software system for manipulating data from the lower layers. The component
layer provides components that decompose functional data (FD) and aspect
elements (AE). Each FD and AE is called to express an execution to the top
layer. The data layer manipulates data acquisition from the different calling
stages through the three-dimensional layering.

Figure 5. Three-layer user interface composition model.

With the given definition and execution designs of the three-dimensional
layering personal finance including the functional data and aspect elements, we
could alter the multidimension layering into the user interface operations. The
interface views are based on the conceptual design of the previous sections.
The multidimensional layering can combine functional data, aspect elements,
and the layers. We believe that our integration stage (Figure 5) enables transfer
of the model to the UI design in an orderly manner. There are three different
executable programs (compile-time, run-time, and weave-time) during the
active life of AOA. The first stage is compiling time. The interface prototypes
(Figure 6-7) are designed for displaying layouts on a computer screen to

14

Component Layer

UI Layer

Data Layer

… UI UI UI UI

Database Three-dimensional layering

 FD FD AE AE … …

 Figure 5. Three-layer user interface composition model.

 With the given definition and execution designs of the three-dimensional layering personal

finance including the functional data and aspect elements, we could alter the multidimension layering

into the user interface operations. The interface views are based on the conceptual design of the

previous sections. The multidimensional layering can combine functional data, aspect elements, and

the layers. We believe that our integration stage (Figure 5) enables transfer of the model to the UI

design in an orderly manner. There are three different executable programs (compile-time, run-time,

and weave-time) during the active life of AOA. The first stage is compiling time. The interface

prototypes (Figure 6-7) are designed for displaying layouts on a computer screen to the end user. To

transform the principle of separating concerns into the end user review phase, our UI approach is

divided into three sections (functional data, aspect element and composition section). The second

stage is running time. We express an interaction of an end user selection to the buttons.

By separating a UI design into three sections, layout buttons are provided in each section. The third

stage is weaving time. A section of weaving executions are specified such as to call a dimension of an

income axis to display an amount balance of income and categories of income (Figure 6), and to call

two and three dimensions for comparing a financial statement (Figure 7). A dynamic selection is

provided in this design when the end user selects and/or deselects the buttons. Then the execution of

the system will display a set of output data differently.

335

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

the end user. To transform the principle of separating concerns into the end
user review phase, our UI approach is divided into three sections (functional
data, aspect element and composition section). The second stage is running
time. We express an interaction of an end user selection to the buttons. By
separating a UI design into three sections, layout buttons are provided in each
section. The third stage is weaving time. A section of weaving executions are
specified such as to call a dimension of an income axis to display an amount
balance of income and categories of income (Figure 6), and to call two and
three dimensions for comparing a financial statement (Figure 7). A dynamic
selection is provided in this design when the end user selects and/or deselects
the buttons. Then the execution of the system will display a set of output data
differently.

Figure 6. User interface through weaver in one-dimensional layering.

 Another component is a CompareStatement in Figure 7. We have
applied dynamic weaving through the layering of three dimensions in order to
compare a number of financial statements. The functional data can be selected
for crosscutting concerns from three method calls (an income, an expenditure,
and a liabilities menu). The execution statement depends on the current stage
of selection controls through the buttons. Figure 7 shows the multidimensional
data operation in different method calls through the interfaces and operational

15

In the concept of the DisplayTotal component, a layering of three dimensions can be

selected to display a balance of income records at the top of the section as shown in Figure 6. An end

user can select the buttons to display the different sets of data in each axis (running time). This stage

depends on the value parameter passing from the menu options. As the aspect elements are separated

into many concerns, we have assigned the time series of the aspect elements for displaying the

different periods of time (year, month, week and day) in the lower section. We assign the menu for the

year, month, week, and day buttons. Four buttons have been created for each one. In addition, there is

another button to customise a variety of selections of a particular time from recordings of a start date

and an end date in the sets of data. Based on a user’s selection, the execution of weaving must call the

functional data and the aspect elements to compute at the lower section. Therefore, we believe that

our layering design of the graphical user interface is able to support the review phase of the software

development process.

 Figure 6. User interface through weaver in one-dimensional layering.

Set of Data:
Liabilities

Set of Data:
Income

Set of Data:
Expenditure

Day

Week

Month

Year

Type

Total

…

 an income
axis

an expenditure
axis

a liabilities
axis

Executions of weaving

Layering of
 three dimensions

The aspect elements

Date Time

 ∃income������ Total U Type, Type = Income
U Month, Month = January U Year, Year = 2019

336

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

semantics of dimensions and layers. The comparison of responsiveness also
provides layering of the time series in a set of aspect elements. Thus, the month
button is specified as an aspect element that is selected in the lower section. At
the weaving point, the execution of weaving enables an adaptive display of the
total number of recordings depending on the end user selection. Therefore, the
composition of the separate designs seems to support the crosscutting layering
views of the functional data and the aspect elements.

 Figure 7. User interface through weaver in multidimensional layering.

PRACTICAL EVALUATION

We conducted an end user evaluation to assess our user interfaces of the
mobile personal finance application prototype. The end user usability of the
mobile application was designed to study the interaction of the framework
composition through the visual user interfaces.

Objectives

In order to evaluate the end user usability, the following objectives were
identified to assess the performance of the layered-combination design of the
three-dimensional functional data and the aspect elements:

16

 Another component is a CompareStatement in Figure 7. We have applied dynamic weaving

through the layering of three dimensions in order to compare a number of financial statements.

The functional data can be selected for crosscutting concerns from three method calls (an income,

an expenditure, and a liabilities menu). The execution statement depends on the current stage of

selection controls through the buttons. Figure 7 shows the multidimensional data operation in

different method calls through the interfaces and operational semantics of dimensions and layers. The

comparison of responsiveness also provides layering of the time series in a set of aspect elements.

Thus, the month button is specified as an aspect element that is selected in the lower section. At the

weaving point, the execution of weaving enables an adaptive display of the total number of recordings

depending on the end user selection. Therefore, the composition of the separate designs seems to

support the crosscutting layering views of the functional data and the aspect elements.

 Figure 7. User interface through weaver in multidimensional layering.

Set of Data:
Liabilities

Set of Data:
Income

Set of Data:
Expenditure

Executions of weaving

Set of Data:
Liabilities

Set of Data:
Income

Set of Data:
Expenditure

((∃Income U ∃Expenditure) Total U (Month,
 Month = January) U (Year, Year = 2019))

((∃Income U ∃Expenditure U ∃Liability) (Total U
(Month, Month = January) U (Year, Year = 2019))

337

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

- RQ1: Does the separation of concerns, data, layers (sections), and composition
 help users to use the application easily?
- RQ2: Does the composition of crosscutting concerns through adaptive
 buttons help users to access data effectively?
- RQ3: Does the design of a variety of functionalities and aspects for an
 all-in-one touch screen help users to control and manage their experience
 comfortably?

Experimental Design

This study was designed using the three components related to Figures 6 and
7. We used a tutorial guild to tip the participants as to how to use our mobile
application. The first component was to insert an income transaction into
the InsertAccount component. The screen showed how the end user could
access and insert a subcategory of an income record. The subdimensions
belonging to the particular dimension could be called to access and select the
subdimensions. The second component was the display of the total balance in
the DisplayTotal component (Figure 6). The screen showed how the end user
could access and see categories and subcategories of income records. The
subdimensions belonging to the one dimension layering could be reported by
end user clicking. The last component was the CompareStatement component
(Figure 7). The comparison screens of the financial statements were assigned
for the users to access the three record categories.
 To evaluate end user satisfaction on mobile usability, a questionnaire
with 19 items and an open-ended question to elicit opinions and suggestions
for improving the mobile application was administered. Research questions
from the System Usability Scale (SUS) questionnaire (Brooke, 1996), the
controllability and management of mobile interactions (Hussain, Hashim,
Nordin, & Tahir, 2013; Tonder & Wesson, 2012), and the questionnaires of
Cui and Honkala (2013) were employed as part of the questionnaire in this
study. We had grouped all items into three aspects: 1) Perceived Usefulness (5
items), 2) Perceived Ease of Use (5 items), 3) and Perceived Controllability
and Management (9 items). Each statement was rated on a Likert scale from
1 (strongly disagree) to 5 (strongly agree). The questionnaire consisted of the
following questions:
Perceived Usefulness (PU)
 Q1. I felt confident using the application.
 Q2. I found the application unnecessarily complex.
 Q3. I found that the various functions in this application were well
 integrated.
 Q4. I would imagine that most people would learn to use this
 application very quickly.
 Q5. I think I would like to use this application frequently.

338

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Perceived Ease of Use (PEU)
 Q6. I thought there was inconsistency in this application.
 Q7. I think that I would not need a technical person to support or
 advise me on using this application.
 Q8. It was easy to track any financial information.
 Q9. I could get to know my financial statements better than the
 existing application.
 Q10. I thought the overall application was easy to use.

Perceived Controllability and Management (PCM)
 Q11. I felt comfortable inserting category names of records for
 income, expenditure, and liabilities.
 Q12. I felt comfortable inserting any transaction into my financial
 accounts.
 Q13. I thought the application separated my categories clearly.
 Q14. I think I can use the buttons to manage my financial records
 quickly.
 Q15. I think the sections on the screen are separated with good looks.
 Q16. I think the purpose of displaying the income, expenditure and
 liabilities button on the same screen is to make it easy to use the
 functions.
 Q17. I think the purpose of separating periods of time (day, week,
 month, and year) is to make it convenient to view my reports.
 Q18. I think it is easy to understand how the application works. The
 task of comparing my financial statement(s) by clicking buttons
 and then the resulting report(s) which can easily be changed.
 Q19. I felt comfortable and could easily use the variety of functions
 that was designed for the all-in-one touch screen.
 The following items were identified to match the research questions.
The RQ1 consisted of: Q11, Q12, Q13, Q15, and Q17. The RQ2 consisted
of: Q6, Q8, Q9, Q14, and Q18. The RQ3 consisted of: Q2, Q3, Q10, Q16,
and Q19. We assumed that the minimum value of an expectation to validate
was 75% for usefulness and satisfaction. The 75% was established as a final
acceptance benchmark for most usability values (Veral & Macias, 2019).

Participants

We ran the experimental study for 100 participants (50 female and 50 male),
aged between 18 and 30 who had experience in using any personal finance and/
or accounting applications for more than three months. All the participants who
volunteered to review the application usage task were from our university.

339

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Procedure and Tasks Performed

We gave the participants our prototype application and allowed them to use
the personal finance application freely. All users were requested to respond
to the post-task questionnaire in order to find out their perceived usage. After
the participants had accessed the tutorial guild, we allowed them to insert
income categories and subcategories (T1). We also told them to insert more
categories for expenditure and liabilities (T2). After that, the participants were
asked to insert their usual transactions (income, expenditure, and liabilities
records) (T3). Then the participants clicked the balance page to see the reports
of each recording (T4) and following that, clicked the status page to view a
comparison of their financial statements (T5). The buttons enabled them to
see the different views. In the final stage, we administered the questionnaires
to the participants to evaluate the end user usability test of our prototype
conceptual design.

Results

In order to assess the end user usability, answers to the research questions
were analyzed. The items were grouped as explained in the experimental
design. The comparison of the research questions based on mean, minimum
value (min), maximum value (max), and standard deviation (SD) is shown in
Table 2. The minimum value of the expectation was 75%.The average value of
RQ1 obtained for the purpose of separating views was 89.12%. The average
value of RQ2 obtained for the purpose of dynamic compositions was 88.88%.
The average value of RQ3 obtained for the purpose of all-in-one screen was
89.56%. Therefore, all research questions were more than the minimum value
of expectations.
 Based on the demographic information gathered from the participants
who completed the questionnaires, 26% of the participants had experience
in using personal finance applications from six to more than 12 months. All
participants were between 18–30 years old. The overall mean of the topic
rating scales for end user usability is presented in Figure 8. The result was
based on a five-point Likert scale from 1 to 5.

340

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Table 2.

End User Results Based on Research Questions.

 Mean Percentage SD Min Max

RQ1 Q11 4.41 88.20 0.5522 3 5
Q12 4.32 86.40 0.4899 3 5
Q13 4.45 89.00 0.5573 3 5
Q15 4.58 91.60 0.5160 3 5
Q17 4.52 90.40 0.5409 3 5
Total 4.46 89.12 0.5373 3 5

RQ2 Q6 4.52 90.40 0.5218 3 5

Q8 4.45 89.00 0.5389 3 5
Q9 4.37 87.40 0.4852 3 5
Q14 4.32 86.40 0.5101 3 5
Q18 4.56 91.20 0.5187 3 5
Total 4.44 88.88 0.5210 3 5

RQ3 Q2 4.46 89.20 0.5759 3 5

Q3 4.28 85.60 0.5333 3 5

Q10 4.44 88.80 0.5187 3 5

Q16 4.68 93.60 0.4899 3 5

Q19 4.53 90.60 0.5766 3 5

Total 4.48 89.56 0.5533 3 5

 Figure 8. Overall mean of topic rating scales.

20

scale from 1 to 5.

Table 2.

End User Results Based on Research Questions.

 Mean Percentage SD Min Max
RQ1 Q11 4.41 88.20 0.5522 3 5

Q12 4.32 86.40 0.4899 3 5
Q13 4.45 89.00 0.5573 3 5
Q15 4.58 91.60 0.5160 3 5

 Q17 4.52 90.40 0.5409 3 5
 Total 4.46 89.12 0.5373 3 5
RQ2 Q6 4.52 90.40 0.5218 3 5

Q8 4.45 89.00 0.5389 3 5
Q9 4.37 87.40 0.4852 3 5
Q14 4.32 86.40 0.5101 3 5
Q18 4.56 91.20 0.5187 3 5

 Total 4.44 88.88 0.5210 3 5

(continued)

 Mean Percentage SD Min Max
RQ3 Q2 4.46 89.20 0.5759 3 5
 Q3 4.28 85.60 0.5333 3 5

Q10 4.44 88.80 0.5187 3 5
Q16 4.68 93.60 0.4899 3 5
Q19 4.53 90.60 0.5766 3 5

 Total 4.48 89.56 0.5533 3 5

 Figure 8. Overall mean of topic rating scales.

4.418
4.436

4.486

4.38
4.4

4.42
4.44
4.46
4.48
4.5

Perceived Usefulness Perceived Ease of Use Perceived Controllability &
Management

341

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

 Based on some of the participants’ comments on the open-ended
question, it was found that the visual design of the all-in-one screen for
reporting financial performance using charts was helpful. Besides, it was easy
to view the comparison of the participants’ records in a more comfortable
and systematic manner. Ease of account reporting and financial comparison
were most commented on by the participants, especially using the dynamic
buttons. They could recognize the reason for using the different colours for the
buttons.
 Independent samples t-test was used to compare the means of two
independent groups.We assigned the gender of the participants. The results
showed statistically significant differences among Q9 (F = 14.337, p
<= 0.01), Q15 (F = 18.831, p <= 0.01), and Q19 (F = 12.887, p <= 0.01).
Two-way ANOVA test was applied to compare the means of three or more
independent groups.We used the experiences of the application usage. The
results showed statistically significant differences among Q1 (F = 19.028, p
<= 0.01), Q7 (F = 12.468, p <= 0.01), Q8 (F = 7.692, p <= 0.01), Q16 (F =
18.826, p <= 0.01), and Q17 (F = 11.578, p <= 0.01).

DISCUSSION

We sorted the information requirements into sets of multidimensional data
as proposed by Akanmu and Jamaluddin (2016). A comprehensive data
dimension was reliably elicited from the dataset in the database tables. The
multidimensional layering was specified for supporting data operations of the
personal finance mobile application. By dividing the information recording into
three dimensions, the functional data was defined as a correlative relationship
of sets of data. An infinite series of a set of dimensions and subdimensions
was proposed. The multidimensional relationships have been claimed to
support software design using layers (Boukraa, Boussaid, Bentayeb, and
Zegour, 2013). Thus, any new concerns or information requirements could
be proposed incrementally and added in the dimensions. Our dimensional
design was described along one dimension (Batory & Geraci, 1997; Batory,
Liu, & Sarvela, 2003). The composition defined the set of all representations
of refinement programs from {f1, …., fn} combined to a program p from
{p1, …, pn}. Besides, more dimensions supporting the degree of abstractions
were related to our design. The principles of the execution design allowed
us to analyze and design any software parts extensively and adaptively.
The decomposition of the requirement designs and system functions on the
architecture view of cloud computing had supported our idea (Surendro,
Supriana, & Supriana, 2016). We proposed that the software system be
composed separately supporting a fine granularity and the composition be
designed flexibly in the informative multidimensional layering.

342

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

 In the early stages of the implementation level, an Aspect-Oriented
Architecture Design (AOAD) (Rashid, Moreira, & Araujo, 2003; Moreira,
Araujo, & Whittle, 2006; Sanchez, Moreira, Fuentes, Araujo, & Magno, 2010)
an approach method and technique of separating concerns to improve on
system quality attributes known as non-functional requirements was applied.
The non-functional requirements can show developers how a software system
should be, not what it should do with regards to functional requirements.
However, our initial research on the separation of concerns seemed to support
all stages of the software development life cycle. Proof of the design concept
based on Rukhiran and Netinant (2017b) is shown in Figure 9.

 Figure 9. Software development stages using separation of concerns for
 prototype model.

 In supporting our separation of UI designs, we arranged the
graphical user interface into three sections. The top section is a selection
of the functional data. There are many stages involved in display layering
of one dimension, comparison between layering of two dimensions, and
comparison among layering of three dimensions. The execution of weaving
for displaying data compositions is based on end user selections by way of
buttons in supporting the main dynamic design of Richard and John (2010).
 We have experimented with the end user usability of the personal
finance mobile application in the evaluation of this paper,. By applying the

22

Fuentes, Araujo, & Magno, 2010) an approach method and technique of separating concerns to

improve on system quality attributes known as non-functional requirements was applied. The non-

functional requirements can show developers how a software system should be, not what it should

do with regards to functional requirements. However, our initial research on the separation of

concerns seemed to support all stages of the software development life cycle. Proof of the design

concept based on Rukhiran and Netinant (2017b) is shown in Figure 9.

 Figure 9. Software development stages using separation of concerns for prototype model.

 In supporting our separation of UI designs, we arranged the graphical user interface into three

sections. The top section is a selection of the functional data. There are many stages involved in

display layering of one dimension, comparison between layering of two dimensions, and comparison

among layering of three dimensions. The execution of weaving for displaying data compositions
is based on end user selections by way of buttons in supporting the main dynamic design of Richard

and John (2010).

 We have experimented with the end user usability of the personal finance mobile application

in the evaluation of this paper,. By applying the questionnaire from many kinds of research, the topics

were in agreement with the Technology Acceptance Model (TAM) (Davis & Venkatesh, 1996;

Ibrahim & Al-Rawashdeh, 2014). The TAM integrates the determinants of perceived ease of use and

perceived usefulness to assess and predict user acceptance. Moreover, we have designed a specific

brief of perceived controllability to prove our conceptual design. The results from our research

Month

 Set of Functional
 Data Data

Analysis

Design

Implement

Day
Week
Month

Income
Expense
Liability

Day

Functional
Components

Expense

 Month

Day

Aspect
Elements

Weaver Model

Based on weaving

Review

Week

Income

Liability
Week

 The execution of weaving

343

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

questionnaire from many kinds of research, the topics were in agreement with
the Technology Acceptance Model (TAM) (Davis & Venkatesh, 1996; Ibrahim
& Al-Rawashdeh, 2014). The TAM integrates the determinants of perceived
ease of use and perceived usefulness to assess and predict user acceptance.
Moreover, we have designed a specific brief of perceived controllability to
prove our conceptual design. The results from our research questions have
passed the minimum value of expectations, which is consistently related to
Veral and Macias (2019). Although there are different methods and techniques
to evaluate user perception (Nooraishaya, Ahmad, & Ali, 2018), the approach
in assessment of the visual composition of the end user perspective in this
study was based on mobile application design and performance (Alalwan,
2020).

CONCLUSION AND FUTURE WORK

One of the key challenges in a mobile application is the focus on improving
software quality attributes to support a variety of mobile performances.
Breaking down a software system into smaller pieces is one solution to allow
us to define the fine granularity for achievable data and reusable functions. We
divided the application specification into two segments. The multidimensional
layering of the personal finance information was assigned to support data
acquisition and manipulation. The aspect element was assigned to operate
functional methodology. The informative three-dimensional layering enabled
support in the development of the personal finance application to achieve
flexible and adaptable designs. We assumed the case study of an execution
rule on the layering of three dimensions and aspect elements (Figure 3). The
operational semantics analyzed these concerns using components. From the
three-dimensional information, layers, functional data, and aspect elements,
we developed the three-dimensional user interface composition model. The
Three-layer User Interface Composition Model (TUICM) (Figure 5) which
responded to UI gave a better performance in terms of relationships of UI,
components, and data access layers. By dividing the display component to
support our analyzed approach, we illustrated a cooperative UI design to keep
a clear separation of the different layers (Figure 6–7). The results of the end
user usability showed the multi-layered approach which enabled adapting of
data operations and reporting.
 Thus, this article has drawn a variety of peopleware in software
development. Firstly, a system analyst can understand the relational separation
of personal finance information through a collection of methods for analyzing
functions and data via a three-dimensional model. The principles of the model
can be applied to any software business. Secondly, it enables a developer to adapt
our design for clean codes and less inheritance. AOSD is one of the approach

344

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

techniques that can avoid scattered (duplication) and tangled (dependency) codes.
Our software design is an open software architecture that can be transformed
and implemented to support any programming language. Finally, an end user
should be able to use the well-organized software design to interact with data or
access any information with no more than the basic rule of three mouse clicks.
 To push forward the personal finance software design to the next stage,
we will focus on an architecture constraint design of components. We intend to
design the components for the personal finance software to support functional
specifications and adaptations. An execution flow diagram of the components
will be provided to connect all components and information flow in the software
system. By improving on the separation of concerns in suitable UI designs,
we plan to focus on various kinds of end user interface designs such as for
the elderly and farmers. The use of technology by the elderly has a beneficial
influence on enhancing their quality of life in an increasing ageing population
in our country. In addition, farming is a major occupation which contributes
to the Thai economy. Most existing software do not support the particular
financial business statements of farmers. Therefore, this house bookkeeping
software design project could take traditional Thai farmers forward to become
smart farmers.

ACKNOWLEDGMENT

This work was supported by the National Broadcasting and Telecommunication
Commission (grant number BT2-15/1-61, from 2019–2021), Rangsit
University and Rajamangala University of Technology Tawan-ok, Thailand.
This research project was funded in the amount of $100,000USD.

REFERENCES

Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of
the factors affecting customer e-satisfaction and continued intention to
reuse. International Journal of Information Management, 50, 28-44.
doi: 10.1016/j.ijinfomgt.2019.04.008

AI-Hudhud, G. (2015). Aspect-oriented design for team learning management
system. Computer in Human Behavior, 51(PB), 627-631. doi: 10.1016/j.
chb.2015.01.032

Ardito, C., Costabile, F. M., Desolda, G., Lanzilotti, R., Matera, M., Piccinno,
A., & Picozzi, M. (2015). User-driven visual composition of service-
based interactive spaces. Journal of Visual Languages and Computing,
25(4), 278-296. doi: 10.1016/j.jvlc.2014.01.003.

345

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

techniques that can avoid scattered (duplication) and tangled (dependency) codes.
Our software design is an open software architecture that can be transformed
and implemented to support any programming language. Finally, an end user
should be able to use the well-organized software design to interact with data or
access any information with no more than the basic rule of three mouse clicks.
 To push forward the personal finance software design to the next stage,
we will focus on an architecture constraint design of components. We intend to
design the components for the personal finance software to support functional
specifications and adaptations. An execution flow diagram of the components
will be provided to connect all components and information flow in the software
system. By improving on the separation of concerns in suitable UI designs,
we plan to focus on various kinds of end user interface designs such as for
the elderly and farmers. The use of technology by the elderly has a beneficial
influence on enhancing their quality of life in an increasing ageing population
in our country. In addition, farming is a major occupation which contributes
to the Thai economy. Most existing software do not support the particular
financial business statements of farmers. Therefore, this house bookkeeping
software design project could take traditional Thai farmers forward to become
smart farmers.

ACKNOWLEDGMENT

This work was supported by the National Broadcasting and Telecommunication
Commission (grant number BT2-15/1-61, from 2019–2021), Rangsit
University and Rajamangala University of Technology Tawan-ok, Thailand.
This research project was funded in the amount of $100,000USD.

REFERENCES

Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of
the factors affecting customer e-satisfaction and continued intention to
reuse. International Journal of Information Management, 50, 28-44.
doi: 10.1016/j.ijinfomgt.2019.04.008

AI-Hudhud, G. (2015). Aspect-oriented design for team learning management
system. Computer in Human Behavior, 51(PB), 627-631. doi: 10.1016/j.
chb.2015.01.032

Ardito, C., Costabile, F. M., Desolda, G., Lanzilotti, R., Matera, M., Piccinno,
A., & Picozzi, M. (2015). User-driven visual composition of service-
based interactive spaces. Journal of Visual Languages and Computing,
25(4), 278-296. doi: 10.1016/j.jvlc.2014.01.003.

Akanmu, S. A., & Jamaluddin, Z. (2016). Designing information visualization
for higher education institutions: A pre-design study. Journal of
Information and Communication Technology, 15(1), 145-163.

Barricelli, R. B., Cassano, F., Fogli, D., & Piccinno, A. (2019). End-user
development, end-user programming and end-user software engineering:
A systematic mapping study. Journal of System and Software, 149, 101-
137. doi:10.1016/j.jss.2018.11.041

Batory, D., & Geraci, B. (1997). Composition validation and subjectivity in
GenVoca generators. IEEE Transaction on Software Engineering, 23(2),
67-82. doi: 10.1109/32.585497

Batory, D., Liu, J., & Sarvela, J. N. (2003). Refinements and multi-dimensional
separation of concerns. ACM SIGSOFT Software Engineering Notes,
28(5), 48-57. doi: 10.1145/949952.940079

Boukraa, D., Boussaid, O., Bentayeb, F., & Zegour, D. (2013). A layered
multidimensional model of complex objects. Proceeding of the 25th
International Conference on Advanced Information Systems Engineering
(pp. 498-513). Valencia, Spain: Springer-Verlag.

Brooke, J. (1996). SUS – A quick and dirty usability scale. Usability Evaluation
in Industry, 189, 4-7.

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann, A. (2019).
Systematic composition of independent language features. The Journal
of Systems and Software, 152, 50-69. doi: 10.1016/j.jss.2019.02.026

Cui, Y., & Honkala, M. (2013). A novel mobile device user interface with
integrated social networking services. International Journal of Human
Computer Studies, 71(9), 919-932. doi: 10.1016/j.ijhcs.2013.03.004

D’Andrea, R. (1999). Software for modeling, analysis, and control design
for multidimensional systems. Proceedings of the IEEE International
Symposium on Computer Aided Control System Design (pp. 24-27).
Hawai, USA: IEEE Company Society.

Davis, D. F., & Venkatesh, V. (1996). A critical assessment of potential
measurement biases in the technology acceptance model: Three
experiments. International Journal of Human Computer Studies, 45(1),
19-45. doi: 10.1006/ijhc.1996.0040

Dennis, A., Wixom, H. B., & Roth, M. R. (2012). System Analysis & Design.
New York, NY: John Wiley & Sons, Inc.

Desolda, G., Ardito, C., Costabile, F. M., & Matera, M. (2017). End-
user composition of interactive applications through actionable UI
components. Journal of Visual Languages and Computing, 42, 46-59.
doi: 10.1016/j.jvlc.2017.08.004

Diaz, M., Romero, S., Rubio, B., Soler, E., & Troya, M. J. (2005). An aspect-
oriented framework for scientific component development. Proceedings
of the 13th Euromicro Conference on Parallel (pp. 290-296). Washington,
USA: IEEE Company Society. doi:10.1109/EMPDP.2005.11

346

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Eeles, J. (2001). Layering Strategies. San Jose, CA: Rational Software
Corporation.

Gibbs, I., Dascalu, S., & Harris, C. F. (2015). A separation-based UI architecture
with a DSL for role specialization. Journal of System and Software, 101,
69-85. doi: 10.1016/j.jss.2014.11.039

Hays, J. R. (2014). User interface design for online social media. California
Polytechnic State University, California, USA.

Hinderks, A., Schrepp, M., Mayo, J. D. F., Escalona, J. M., & Thomaschewski,
J. (2019). Developing a UX KPI based on the user experience
questionnaire. Computer Standards & Interfaces, 65, 38- 44.
doi:10.1016/j.csi.2019.01.007

Hoffman, K., & Eugster, P. (2008). Towards reusable components with aspects:
An empirical study on modularity and obliviousness. Proceedings of the
30th International Conference on Software Engineering (pp. 91-100).
Leipzig, Germany: ACM. doi: 10.1145/1368088.1368102

Hussain, A., Hashim, N. L., Nordin, N., & Tahir, H. M. (2013). A metric-
based evaluation model for applications on mobile phones. Journal of
Information and Communication Technology, 12(1), 55-71.

Ibrahim, H., & Al-Rawashdeh, T. A. (2014). Acceptance of web-based training
system among public sector employees. Journal of Information and
Communication Technology, 13, 87-107.

Jallow, A. K., Demian, P., Anumba, C. J., & Baldwin, A. N. (2017). An enterprise
architecture framework for electronic requirements information
management. International Journal of Information Management, 37(5),
455-472. doi: 10.1016/j.ijinfomgt.2017.04.005

Jelinek, J., & Slavik, P. (2004). GUI generation from annotated source
code. Proceedings of the 3rd Annual Conference on Task Models
and Diagrams (pp. 129-136). Prague, Czech Republic: ACM. doi:
10.1145/1045446.1045470

Kennard, R., & Leaney, J. (2010). Towards a general purpose architecture for
UI generation. Journal of System and Software, 83(10), 1896-1906.
doi:10.1016/j.jss.2010.05.079

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
& Irwin, J. (1997). Aspect-oriented programming. Proceedings of the
11th European Conference on Object-Oriented Programming (pp. 220-
242). Finland: Springer-Verlag. doi: 10.1007/BFb0053381

Kumar, A., Kumar, A., & Iyyappan, M. (2016). Applying separation of concern
for developing softwares using aspect oriented programming concepts.
Proceedings of the International Conference on Computational
Modeling and Security (pp. 906-914). Bengaluru, India: Elsevier B.V.
doi: 10.1016/j.procs.2016.05.281

Latizina, M., & Beringer, J. (2012). Transformative user experience:
Beyond packaged design. Interactions, 19(2), 30-33. doi:
10.1145/2090150.2090159

347

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Eeles, J. (2001). Layering Strategies. San Jose, CA: Rational Software
Corporation.

Gibbs, I., Dascalu, S., & Harris, C. F. (2015). A separation-based UI architecture
with a DSL for role specialization. Journal of System and Software, 101,
69-85. doi: 10.1016/j.jss.2014.11.039

Hays, J. R. (2014). User interface design for online social media. California
Polytechnic State University, California, USA.

Hinderks, A., Schrepp, M., Mayo, J. D. F., Escalona, J. M., & Thomaschewski,
J. (2019). Developing a UX KPI based on the user experience
questionnaire. Computer Standards & Interfaces, 65, 38- 44.
doi:10.1016/j.csi.2019.01.007

Hoffman, K., & Eugster, P. (2008). Towards reusable components with aspects:
An empirical study on modularity and obliviousness. Proceedings of the
30th International Conference on Software Engineering (pp. 91-100).
Leipzig, Germany: ACM. doi: 10.1145/1368088.1368102

Hussain, A., Hashim, N. L., Nordin, N., & Tahir, H. M. (2013). A metric-
based evaluation model for applications on mobile phones. Journal of
Information and Communication Technology, 12(1), 55-71.

Ibrahim, H., & Al-Rawashdeh, T. A. (2014). Acceptance of web-based training
system among public sector employees. Journal of Information and
Communication Technology, 13, 87-107.

Jallow, A. K., Demian, P., Anumba, C. J., & Baldwin, A. N. (2017). An enterprise
architecture framework for electronic requirements information
management. International Journal of Information Management, 37(5),
455-472. doi: 10.1016/j.ijinfomgt.2017.04.005

Jelinek, J., & Slavik, P. (2004). GUI generation from annotated source
code. Proceedings of the 3rd Annual Conference on Task Models
and Diagrams (pp. 129-136). Prague, Czech Republic: ACM. doi:
10.1145/1045446.1045470

Kennard, R., & Leaney, J. (2010). Towards a general purpose architecture for
UI generation. Journal of System and Software, 83(10), 1896-1906.
doi:10.1016/j.jss.2010.05.079

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
& Irwin, J. (1997). Aspect-oriented programming. Proceedings of the
11th European Conference on Object-Oriented Programming (pp. 220-
242). Finland: Springer-Verlag. doi: 10.1007/BFb0053381

Kumar, A., Kumar, A., & Iyyappan, M. (2016). Applying separation of concern
for developing softwares using aspect oriented programming concepts.
Proceedings of the International Conference on Computational
Modeling and Security (pp. 906-914). Bengaluru, India: Elsevier B.V.
doi: 10.1016/j.procs.2016.05.281

Latizina, M., & Beringer, J. (2012). Transformative user experience:
Beyond packaged design. Interactions, 19(2), 30-33. doi:
10.1145/2090150.2090159

Leach, R. J. (2016). Introduction to software engineering (2nd ed.). Boca
Raton, Florida: CRC Press.

Lin-lin, Z., Shi, Y. You-cong, N., Jing, W., Kai, Z., & Peng, Y. (2008) Towards
multi-dimensional separating of NFRs in software architecture.
Proceedings of the International Conference on Computer Science and
Software Engineering (pp. 104-107). Hubei, China: IEEE Company
Society. doi: 10.1109/CSSE.2008.1201

Mirbel, I., & Rivieres, V. (2003). Conciliating user interface and business
domain analysis and design. Proceedings of the International Conference
on Object-Oriented Information Systems (pp. 383-399). Geneva,
Switzerland: Springer-Verlag. doi: 10.1007/978-3-540-45242-3_40

Moreira, A., Araujo, J., & Whittle, J. (2006). Modeling volatile concerns as
aspects. Proceedings of the 18th International Conference on Advanced
Information Systems Engineering (pp. 544-558). Luxembourg, USA:
Springer-Verlag. doi: 10.1007/11767138_36

Muck, T. R., & Frohlich, A. A. (2014) Aspect-oriented RTL HW design
using system C. Microprocessors and Microsystems, 38, 113-123. doi:
10.1016/j.micpro.2013.12.002

Netinant, P., & Elrad, T. (2016). Separation of concerns in designing mobile
software. Rangsit Journal of Arts and Sciences, (6)1, 89-96. doi:
10.14456/rjas.2016.8

Nooraishaya, W., Ahmad, W., & Ali, N. M. (2018). The impact of persuasive
technology on user emotional experience and user experience over
time. Journal of Information and Communication Technology, 17(4),
601-628.

Oxford English Dictionary. (2011). Oxford: Oxford University Press.
Panunzion, M., & Vardanega, T. (2014a). A component-based process with

separation of concerns for the development of embedded real-time
software systems. The Journal of Systems and Software, 96, 105-121.
doi: 10.1016/j.jss.2014.05.076

Panunzion, M., & Vardanega. T. (2014b). An architectural approach with
separation of concerns to address extra-functional requirements in the
development of embedded real-time software systems. Journal of Systems
Architecture, 60(9), 770-781. doi: 10.1016/j.sysarc.2014.06.001

Pedersen, T. B., & Jensen, C.S. (1999). Multidimensional data modeling for
complex data. Proceedings of the 15th International Conference on
Data Engineering (pp. 336-345). Sydney, Australia: IEEE Computer
Society.

Pekilis, R. B. (2002). Multi-dimensional separation of concerns. Technical
Research Report. University of Waterloo.

Raheman S. R., Maringanti, H. B., & Rath, A. K. (2018). Aspect oriented
programs: Issues and perspective. Journal of Electrical Systems and
Information Technology, 5, 562-575. doi: 10.1016/j.jesit.2017.06.003

348

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Rashid, A., Moreira, A., & Araujo, J. (2003). Modularization and composition
of aspectual requirements. Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development (pp.11–20).
Boston, MA: ACM. doi: 10.1145/643603.643605

Richard, K., & John, L. (2010). Toward a general purpose architecture for UI
generation. The Journal of Systems and Software, 83(10), 1896-1906.
doi: 10.1016/j.jss.2010.05.079

Rosenmuller, M., Siegmund, N., Thum, T., & Saake, G. (2011). Multi-
dimensional variability modeling. Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems (pp. 11-20). Namur,
Belgium: ACM. doi: 10.1145/1944892.1944894

Rukhiran, M., & Netinant, P. (2017a). The concept design of house bookkeeping
software using Aspect-oriented approach. Proceedings of the 2017
International Conference on Information Technology (pp. 232-236).
Singapore, Singapore: ACM. doi: 10.1145/3176653.3176667

Rukhiran, M., & Netinant, P. (2017b). Aspect-oriented approach for
supporting house bookkeeping software design. Proceedings of the
2017 International Conference on Software and e-Business (pp. 49-54).
Hong Kong: ACM. doi: 10.1145/3178212.3178217

Sadowski, C., & Zimmermann, T. (2019). Rethinking productivity in software
engineering. Berkeley, California: Apress Open.

Sanchez, P., Moreira, A., Fuentes, L., Araujo, J., & Magno, J. (2010). Model-
driven development for early aspects. Information Software Technology,
52(3), 249-273. doi: 10.1016/j.infsof.2009. 09.001

Silveira, F. F., Cunha, A. M., & Lisboa, M. L. (2014) A state-based testing
method or detecting aspect composition faults. Proceedings of the
14th International Conference on Computational Science and Its
Applications (pp. 418-433). Guimaraes, Portugal: Springer-Verlag. doi:
10.13140/2.1. 2306.1762

Sommerville, I. (2014). Software Engineering (10th ed.). Boston,
Massachusetts: Pearson Education, Inc.

Surendro, K., Supriana, A., & Supriana, I. (2016). Requirements Engineering
for Cloud Computing Adaptive Model. Journal of Information and
Communication Technology, 15(2), 1-17.

Tanter, E., Figueroa, I., & Tabaerau, N. (2014). Execution levels for aspect-
oriented programming: Design, semantics, implementations and
applications. Science of Computer Programming, 80, 311-342. doi:
10.1016/j.scico.2013.09.002

Tarr, P., Ossher, H., Harrison, W., & Sutton, M. S. (1999). N degrees of
separation: Multi-dimensional separation of concerns. Proceedings of
the 21st International Conference on Software Engineering (pp. 107-
119). Los Angeles, California: ACM. doi: 10.1145/302405.302457

349

Journal of ICT, 19, No. 3 (July) 2020, pp: 321-349

Rashid, A., Moreira, A., & Araujo, J. (2003). Modularization and composition
of aspectual requirements. Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development (pp.11–20).
Boston, MA: ACM. doi: 10.1145/643603.643605

Richard, K., & John, L. (2010). Toward a general purpose architecture for UI
generation. The Journal of Systems and Software, 83(10), 1896-1906.
doi: 10.1016/j.jss.2010.05.079

Rosenmuller, M., Siegmund, N., Thum, T., & Saake, G. (2011). Multi-
dimensional variability modeling. Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems (pp. 11-20). Namur,
Belgium: ACM. doi: 10.1145/1944892.1944894

Rukhiran, M., & Netinant, P. (2017a). The concept design of house bookkeeping
software using Aspect-oriented approach. Proceedings of the 2017
International Conference on Information Technology (pp. 232-236).
Singapore, Singapore: ACM. doi: 10.1145/3176653.3176667

Rukhiran, M., & Netinant, P. (2017b). Aspect-oriented approach for
supporting house bookkeeping software design. Proceedings of the
2017 International Conference on Software and e-Business (pp. 49-54).
Hong Kong: ACM. doi: 10.1145/3178212.3178217

Sadowski, C., & Zimmermann, T. (2019). Rethinking productivity in software
engineering. Berkeley, California: Apress Open.

Sanchez, P., Moreira, A., Fuentes, L., Araujo, J., & Magno, J. (2010). Model-
driven development for early aspects. Information Software Technology,
52(3), 249-273. doi: 10.1016/j.infsof.2009. 09.001

Silveira, F. F., Cunha, A. M., & Lisboa, M. L. (2014) A state-based testing
method or detecting aspect composition faults. Proceedings of the
14th International Conference on Computational Science and Its
Applications (pp. 418-433). Guimaraes, Portugal: Springer-Verlag. doi:
10.13140/2.1. 2306.1762

Sommerville, I. (2014). Software Engineering (10th ed.). Boston,
Massachusetts: Pearson Education, Inc.

Surendro, K., Supriana, A., & Supriana, I. (2016). Requirements Engineering
for Cloud Computing Adaptive Model. Journal of Information and
Communication Technology, 15(2), 1-17.

Tanter, E., Figueroa, I., & Tabaerau, N. (2014). Execution levels for aspect-
oriented programming: Design, semantics, implementations and
applications. Science of Computer Programming, 80, 311-342. doi:
10.1016/j.scico.2013.09.002

Tarr, P., Ossher, H., Harrison, W., & Sutton, M. S. (1999). N degrees of
separation: Multi-dimensional separation of concerns. Proceedings of
the 21st International Conference on Software Engineering (pp. 107-
119). Los Angeles, California: ACM. doi: 10.1145/302405.302457

Tonder, P. B., & Wesson L. J. (2012). Improving the controllability of tilt
interaction for mobile map-based applications. International Journal
of Human Computer Studies, 70(12), 920-935. doi: 10.1016/j.
ijhcs.2012.08.001

Usoro, A. (2013). Effective document and data management. International
Journal of Information Management, 33(4), 702-705. doi: 10.1016/j.
ijinfomgt.2013.04.004

Veral, R., & Macias, A. J. (2019). Supporting user-perceived usability
benchmarking through a developed quantitative metric. International
Journal of Human Computer Studies, 122, 184-195. doi: 10.1016/j.
ijhcs.2018.09.012

Zhang, G., & Rong, M., 2009. A framework for dynamic evolution based
on reflective aspect-oriented software architecture. Proceedings of the
4th International Conference on Computer Sciences and Convergence
Information Technology (pp. 7-10). Seoul, South Korea: IEEE. doi:
10.1109/ICCIT.2009.102

